File size: 19,751 Bytes
b7289c6
 
 
 
fda58da
e516684
b7289c6
 
 
 
 
 
 
 
 
c673bf2
b7289c6
 
19341ef
af76925
e516684
17b2024
 
b7289c6
 
 
 
 
 
f484ffe
 
 
 
 
8df1e9f
 
 
 
 
 
 
 
 
 
 
 
b7289c6
 
 
 
 
 
 
8df1e9f
b7289c6
 
 
8df1e9f
 
 
 
 
 
 
 
 
 
 
 
 
b7289c6
 
 
8df1e9f
b7289c6
 
 
8df1e9f
 
 
 
 
b7289c6
 
af76925
b7289c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cf0bb
b7289c6
 
 
 
 
38cf0bb
 
19341ef
 
 
 
38cf0bb
796a4bb
 
 
 
 
 
 
38cf0bb
 
796a4bb
 
c673bf2
796a4bb
 
 
8df1e9f
796a4bb
 
 
 
19341ef
8df1e9f
 
 
f484ffe
 
 
 
 
 
 
 
c673bf2
f484ffe
 
 
8df1e9f
 
 
f484ffe
 
 
 
 
8df1e9f
fda58da
 
 
 
 
af76925
38cf0bb
fda58da
b7289c6
 
f484ffe
 
 
b7289c6
 
 
 
 
 
 
 
 
 
e516684
b7289c6
 
e516684
b7289c6
 
19341ef
fda58da
 
b7289c6
e516684
 
 
 
 
 
 
 
 
 
 
 
b7289c6
 
8df1e9f
b7289c6
 
 
8df1e9f
 
 
 
 
 
 
 
 
 
 
 
19341ef
f484ffe
 
19341ef
f484ffe
 
 
 
 
19341ef
 
 
8df1e9f
19341ef
38cf0bb
 
8df1e9f
38cf0bb
 
19341ef
 
d486d32
 
 
 
 
 
 
 
 
 
 
 
 
 
f484ffe
 
fda58da
02c1715
f484ffe
38cf0bb
 
 
 
 
fda58da
38cf0bb
 
 
 
fda58da
 
 
 
 
 
 
 
 
38cf0bb
 
f484ffe
 
 
 
 
 
 
19341ef
f484ffe
38cf0bb
 
 
 
 
 
 
 
fda58da
5f3c554
fda58da
af76925
 
 
 
f484ffe
b7289c6
17b2024
 
 
 
 
b7289c6
8df1e9f
439e01f
796a4bb
 
 
 
 
 
 
 
 
19341ef
 
fda58da
 
 
 
f484ffe
796a4bb
5b07f21
796a4bb
 
 
 
c673bf2
19341ef
796a4bb
b7289c6
796a4bb
 
fda58da
 
 
796a4bb
fda58da
 
19341ef
38cf0bb
 
 
 
796a4bb
19341ef
796a4bb
8df1e9f
 
 
 
 
 
 
 
 
 
 
 
f484ffe
fda58da
 
f484ffe
38cf0bb
b8f7efd
fda58da
f484ffe
 
 
 
02c1715
8df1e9f
f484ffe
fda58da
 
 
 
 
 
 
 
 
 
 
b8f7efd
0dc8c45
38cf0bb
796a4bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c673bf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d486d32
 
c673bf2
 
 
 
 
 
 
 
 
 
 
 
fda58da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796a4bb
f484ffe
 
 
19341ef
796a4bb
b7289c6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import streamlit as st
import pandas as pd
import numpy as np
import re
import random
import time

import streamlit as st
from dotenv import load_dotenv
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI
from langchain import hub
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import WebBaseLoader,FireCrawlLoader,PyPDFLoader
from langchain_core.prompts.prompt import PromptTemplate
import os
from high_chart import test_chart
from chat_with_pps import get_response
from ecologits.tracers.utils import compute_llm_impacts
from codecarbon import EmissionsTracker

load_dotenv()

def get_docs_from_website(urls):
    loader = WebBaseLoader(urls, header_template={
      'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
    })
    try:
        docs = loader.load()
        return docs
    except Exception as e:
        return None
  

def get_docs_from_website_fc(urls,firecrawl_api_key):
    docs = []
    try:
        for url in urls:
            loader = FireCrawlLoader(api_key=firecrawl_api_key, url = url,mode="scrape")
            docs+=loader.load()
        return docs
    except Exception as e:
        return None
  

def get_doc_chunks(docs):
    # Split the loaded data
    # text_splitter = RecursiveCharacterTextSplitter(
    #                             chunk_size=500, 
    #                             chunk_overlap=100)

    text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small"))
    
    docs = text_splitter.split_documents(docs)
    return docs

def get_doc_chunks_fc(docs):
    # Split the loaded data
    # text_splitter = RecursiveCharacterTextSplitter(
    #                             chunk_size=500, 
    #                             chunk_overlap=100)

    text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small"))
    docs_splitted = []
    for text in docs:
        text_splitted = text_splitter.split_text(text)
        docs_splitted+=text_splitted
    return docs_splitted
    

def get_vectorstore_from_docs(doc_chunks):
    embedding = OpenAIEmbeddings(model="text-embedding-3-small")
    vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding)
    return vectorstore

def get_vectorstore_from_text(texts):
    embedding = OpenAIEmbeddings(model="text-embedding-3-small")
    vectorstore = FAISS.from_texts(texts=texts, embedding=embedding)
    return vectorstore

def get_conversation_chain(vectorstore):
    llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
    
    retriever=vectorstore.as_retriever()

    prompt = hub.pull("rlm/rag-prompt")
    # Chain
    rag_chain = (
        {"context": retriever , "question": RunnablePassthrough()}
        | prompt
        | llm
    )
    return rag_chain

# FILL THE PROMPT FOR THE QUESTION VARIABLE THAT WILL BE USED IN THE RAG PROMPT, ATTENTION NOT CONFUSE WITH THE RAG PROMPT
def fill_promptQ_template(input_variables, template):
    prompt = PromptTemplate(input_variables=["BRAND_NAME","BRAND_DESCRIPTION"], template=template)
    return prompt.format(BRAND_NAME=input_variables["BRAND_NAME"], BRAND_DESCRIPTION=input_variables["BRAND_DESCRIPTION"])

def text_to_list(text):
    lines = text.replace("- ","").split('\n')
    
    lines = [line.split() for line in lines]
    items = [[' '.join(line[:-1]),line[-1]] for line in lines]

    # Assuming `items` is the list of items
    for item in items:
        item[1] = re.sub(r'\D', '', item[1])
    return items

def delete_pp(pps):
    for pp in pps:
        for i in range(len(st.session_state['pp_grouped'])):
            if st.session_state['pp_grouped'][i]['name'] == pp:
                del st.session_state['pp_grouped'][i]
                break

def display_list_urls():
    for index, item in enumerate(st.session_state["urls"]):
        emp = st.empty()  # Create an empty placeholder
        col1, col2 = emp.columns([7, 3])  # Divide the space into two columns

        # Button to delete the entry, placed in the second column
        if col2.button("❌", key=f"but{index}"):
            temp  = st.session_state['parties_prenantes'][index]
            delete_pp(temp)
            del st.session_state.urls[index]
            del st.session_state["parties_prenantes"][index]
            st.rerun()  # Rerun the app to update the display

        if len(st.session_state.urls) > index:
            # Instead of using markdown, use an expander in the first column
            with col1.expander(f"Source {index+1}: {item}"):
                pp = st.session_state["parties_prenantes"][index]
                st.write(pd.DataFrame(pp, columns=["Partie prenante"]))
        else:
            emp.empty()  # Clear the placeholder if the index exceeds the list
    
def colored_circle(color):
    return f'<span style="display: inline-block; width: 15px; height: 15px; border-radius: 50%; background-color: {color};"></span>'

def display_list_pps():
    for index, item in enumerate(st.session_state["pp_grouped"]):
        emp = st.empty()
        col1, col2 = emp.columns([7, 3])

        if col2.button("❌", key=f"butp{index}"):

            del st.session_state["pp_grouped"][index]
            st.rerun()

        if len(st.session_state["pp_grouped"]) > index:
            name = st.session_state["pp_grouped"][index]["name"]
            col1.markdown(f'<p>{colored_circle(st.session_state["pp_grouped"][index]["color"])} {st.session_state["pp_grouped"][index]["name"]}</p>',
        unsafe_allow_html=True
    )
        else:
            emp.empty()


                
def extract_pp(docs,input_variables):
    template_extraction_PP = """
    Objectif : Identifiez toutes les parties prenantes de la marque suivante :

    Le nom de la marque de référence est le suivant : {BRAND_NAME}

    TA RÉPONSE DOIT ÊTRE SOUS FORME DE LISTE DE NOMS DE MARQUES, CHAQUE NOM SUR UNE LIGNE SÉPARÉE.

    """
    #don't forget to add the input variables from the maim function

    if docs == None:
        return "445"

    #get text chunks
    text_chunks = get_doc_chunks(docs)

    #create vectorstore
    vectorstore = get_vectorstore_from_docs(text_chunks)

    chain = get_conversation_chain(vectorstore)

    question = fill_promptQ_template(input_variables, template_extraction_PP)

    start = time.perf_counter()
    response = chain.invoke(question)

    response_latency = time.perf_counter() - start
    # version plus poussée a considérer
    # each item in the list is a list with the name of the brand and the similarity percentage
    # partie_prenante = text_to_list(response.content)
    if "ne sais pas" in response.content:
        return "444"

    #calculate impact
    nbre_out_tokens = response.response_metadata["token_usage"]["completion_tokens"]
    provider = "openai"
    model = "gpt-4o"
    impact = compute_llm_impacts(
        provider=provider,
        model_name=model,
        output_token_count=nbre_out_tokens,
        request_latency=response_latency,
    )

    st.session_state["partial_emissions"]["extraction_pp"]["el"] += impact.gwp.value
    #version simple
    partie_prenante = response.content.replace("- ","").split('\n')
    partie_prenante = [item.strip() for item in partie_prenante]

    return partie_prenante

def generate_random_color():
        # Generate random RGB values
        r = random.randint(0, 255)
        g = random.randint(0, 255)
        b = random.randint(0, 255)

        # Convert RGB to hexadecimal
        color_hex = '#{:02x}{:02x}{:02x}'.format(r, g, b)

        return color_hex


def format_pp_add_viz(pp):
    y = 50
    x = 50
    for i in range(len(st.session_state['pp_grouped'])):
        if st.session_state['pp_grouped'][i]['y'] == y and st.session_state['pp_grouped'][i]['x'] == x:
            y += 5
        if y > 95:
            y = 50
            x += 5
        if st.session_state['pp_grouped'][i]['name'] == pp:
            return None
    else:
        st.session_state['pp_grouped'].append({'name':pp, 'x':x,'y':y, 'color':generate_random_color()})

def add_pp(new_pp, default_value=50):
    new_pp = sorted(new_pp)
    new_pp = [item.lower().capitalize().strip() for item in new_pp]
    st.session_state['parties_prenantes'].append(new_pp)
    for pp in new_pp:
        format_pp_add_viz(pp)

def add_existing_pps(pp,pouvoir,influence):
    for i in range(len(st.session_state['pp_grouped'])):
        if st.session_state['pp_grouped'][i]['name'] == pp:
            st.session_state['pp_grouped'][i]['x'] = influence
            st.session_state['pp_grouped'][i]['y'] = pouvoir
            return None
    st.session_state['pp_grouped'].append({'name':pp, 'x':influence,'y':pouvoir, 'color':generate_random_color()})

def load_csv(file):
    df = pd.read_csv(file)
    for index, row in df.iterrows():
        add_existing_pps(row['parties prenantes'],row['pouvoir'],row['influence'])


def add_pp_input_text():
    new_pp = st.text_input("Ajouter une partie prenante")
    if st.button("Ajouter",key="add_single_pp"):
        format_pp_add_viz(new_pp)


def complete_and_verify_url(partial_url):
    # Regex pattern for validating a URL
    regex = re.compile(
        r'^(?:http|ftp)s?://'  # http:// or https://
        r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,8}\.?|'  # domain
        r'localhost|'  # localhost...
        r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'  # ...or ip
        r'(?::\d+)?'  # optional port
        r'(?:/?|[/?]\S+)$', re.IGNORECASE)
    
    regex = re.compile(
        r'^(?:http|ftp)s?://'  # http:// or https://
        r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,8}\.?|'  # domain name
        r'localhost|'  # or localhost
        r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'  # or IPv4 address
        r'(?::\d+)?'  # optional port
        r'(?:[/?#][^\s]*)?$',  # optional path, query, or fragment
        re.IGNORECASE)

    # Complete the URL if it doesn't have http:// or https://
    if not partial_url.startswith(('http://', 'https://', 'www.')):
        if not partial_url.startswith('www.'):
            complete_url = 'https://www.' + partial_url
        else:
            complete_url = 'https://' + partial_url

    elif partial_url.startswith('www.'):
        complete_url = 'https://' + partial_url

    else:
        complete_url = partial_url

    # Check if the URL is valid
    if re.match(regex, complete_url):
        return (True, complete_url)
    else:
        return (False, complete_url)
    
@st.dialog("Conseil IA",width="large")
def show_conseil_ia():
    prompt = "Prenant compte les données de l'entreprise (activité, produits, services ...), quelles sont les principales parties prenantes à animer pour une démarche RSE réussie ?"
    st.markdown(f"**{prompt}**")
    response = st.write_stream(get_response(prompt, "",st.session_state["latest_doc"][0].page_content))
    st.warning("Quittez et saisissez une autre URL")

def display_pp():
    if "emission" not in st.session_state:
        tracker = EmissionsTracker()
        tracker.start()
        st.session_state["emission"] = tracker
        
    load_dotenv()
    fire_crawl_api_key = os.getenv("FIRECRAWL_API_KEY")

    #check if brand name and description are already set
    if "Nom de la marque" not in st.session_state:
        st.session_state["Nom de la marque"] = ""

    #check if urls and partie prenante are already set
    if "urls" not in st.session_state:
        st.session_state["urls"] = []
    if "parties_prenantes" not in st.session_state:
        st.session_state['parties_prenantes'] = []
    if "pp_grouped" not in st.session_state: #servira pour le plot et la cartographie des parties prenantes, regroupe sans doublons
        st.session_state['pp_grouped'] = []
    if "latest_doc" not in st.session_state:
        st.session_state['latest_doc'] = ""
    if "not_pp" not in st.session_state:
        st.session_state["not_pp"] = ""
    

    st.title("IDENTIFIER ET ANIMER VOS PARTIES PRENANTES")
    #set brand name and description
    brand_name = st.text_input("Nom de la marque", st.session_state["Nom de la marque"])
    st.session_state["Nom de la marque"] = brand_name

    option = st.radio("Source", ("A partir de votre site web", "A partir de vos documents entreprise","A partir de cartographie existante"))

    #if the user chooses to extract from website
    if option == "A partir de votre site web":

        url = st.text_input("Ajouter une URL")
        
        captions = ["L’IA prend en compte uniquement les textes contenus dans les pages web analysées","L’IA prend en compte les textes, les images et les liens URL contenus dans les pages web analysées"]
        scraping_option = st.radio("Mode", ("Analyse rapide", "Analyse profonde"),horizontal=True,captions = captions)
        #if the user clicks on the button
        if st.button("ajouter",key="add_pp"):
            st.session_state["not_pp"] = ""
            #complete and verify the url
            is_valid,url = complete_and_verify_url(url)
            if not is_valid:
                st.error("URL invalide")
            elif url in st.session_state["urls"] :
                st.error("URL déjà ajoutée")
            
            else:
                if scraping_option == "Analyse profonde":
                    with st.spinner("Collecte des données..."):
                        docs = get_docs_from_website_fc([url],fire_crawl_api_key)
                    if docs is None:
                        st.warning("Erreur lors de la collecte des données, 2eme essai avec collecte rapide...")
                        with st.spinner("2eme essai, collecte rapide..."):  
                            docs = get_docs_from_website([url])

                if scraping_option == "Analyse rapide":
                    with st.spinner("Collecte des données..."):
                        docs = get_docs_from_website([url])
                
                if docs is None:
                    st.error("Erreur lors de la collecte des données, URL unvalide")
                    st.session_state["latest_doc"] = ""
                else:
                # Création de l'expander
                    st.session_state["partial_emissions"]["Scrapping"]["cc"] = st.session_state["emission"].stop()
                    st.session_state["latest_doc"] = docs
                    
                    with st.spinner("Processing..."):

                        #handle the extraction
                        input_variables = {"BRAND_NAME": brand_name, "BRAND_DESCRIPTION": ""}
                        partie_prenante = extract_pp(docs, input_variables)

                    if "444" in partie_prenante: #444 is the code for no brand found , chosen
                        st.session_state["not_pp"] = "444"

                    elif "445" in partie_prenante: #445 is the code for no website found with the given url
                        st.error("Aucun site web trouvé avec l'url donnée")
                        st.session_state["not_pp"] = ""
                    else:
                        st.session_state["not_pp"] = ""
                        partie_prenante = sorted(partie_prenante)
                        st.session_state["urls"].append(url)
                        add_pp(partie_prenante)
                        st.session_state["partial_emissions"]["extraction_pp"]["cc"] = st.session_state["emission"].stop()
                    
                    
                    # alphabet = [ pp[0] for pp in partie_prenante]
                    # pouvoir = [ 50 for _ in range(len(partie_prenante))]
                    # df = pd.DataFrame({'partie_prenante': partie_prenante, 'pouvoir': pouvoir, 'code couleur': partie_prenante})
                    # st.write(df)

                    # c = (
                    # alt.Chart(df)
                    # .mark_circle(size=300)
                    # .encode(x="partie_prenante", y=alt.Y("pouvoir",scale=alt.Scale(domain=[0,100])), color="code couleur")
                    # )
                    # st.subheader("Vertical Slider")
                    # age = st.slider("How old are you?", 0, 130, 25)
                    # st.write("I'm ", age, "years old")

                    # disp_vertical_slider(partie_prenante)
                    # st.altair_chart(c, use_container_width=True)
    if option =="A partir de vos documents entreprise":

        uploaded_file = st.file_uploader("Télécharger le fichier PDF", type="pdf")
        if uploaded_file is not None:

            if st.button("ajouter",key="add_pp_pdf"):
                st.session_state["not_pp"] = ""

                with st.spinner("Processing..."):
                    file_name = uploaded_file.name
                    with open(file_name, mode='wb') as w:
                        w.write(uploaded_file.getvalue())
                    pdf = PyPDFLoader(file_name)
                    text = pdf.load()
                    st.session_state["latest_doc"] = text
                    input_variables = {"BRAND_NAME": brand_name, "BRAND_DESCRIPTION": ""}
                    partie_prenante = extract_pp(text, input_variables)

                    if "444" in partie_prenante: #444 is the code for no brand found , chosen
                        st.session_state["not_pp"] = "444"

                    elif "445" in partie_prenante: #445 is the code for no website found with the given url
                        st.error("Aucun site web trouvé avec l'url donnée")
                        st.session_state["not_pp"] = ""

                    else:
                        st.session_state["not_pp"] = ""
                        partie_prenante = sorted(partie_prenante)
                        st.session_state["urls"].append(file_name)
                        add_pp(partie_prenante)
                
    if option == "A partir de cartographie existante":
        uploaded_file = st.file_uploader("Télécharger le fichier CSV", type="csv")
        if uploaded_file is not None:
            if st.button("ajouter",key="add_pp_csv"):
                file_name = uploaded_file.name
                with open(file_name, mode='wb') as w:
                    w.write(uploaded_file.getvalue())
                
                try:
                    load_csv(file_name)
                    brand_name_from_csv = file_name.split("-")[1]
                    st.session_state["Nom de la marque"] = brand_name_from_csv
                except Exception as e:
                    st.error("Erreur lors de la lecture du fichier")
                

    if st.session_state["not_pp"] == "444":
        st.warning("Aucune parties prenantes n'est identifiable sur l'URL fournie. Fournissez une autre URL ou bien cliquez sur le boutton ci-dessous pour un Conseils IA")
                        
        if st.button("Conseil IA"):
            show_conseil_ia()
    #display docs
    if st.session_state["latest_doc"] != "":
        with st.expander("Cliquez ici pour éditer et voir le document"):
            docs = st.session_state["latest_doc"]
            cleaned_text = re.sub(r'\n\n+', '\n\n', docs[0].page_content.strip())
            text_value = st.text_area("Modifier le texte ci-dessous:", value=cleaned_text, height=300)
            if st.button('Sauvegarder',key="save_doc_fake"):
                st.success("Texte sauvegardé avec succès!")
    
    display_list_urls()
    with st.expander("Liste des parties prenantes"):
        add_pp_input_text()
        display_list_pps()
    test_chart()