|
import streamlit as st |
|
import markdown2 |
|
import pdfkit |
|
from io import BytesIO |
|
from IPython.display import display, FileLink |
|
import base64 |
|
from langchain_core.messages import AIMessage, HumanMessage |
|
from datetime import datetime |
|
from download_chart import construct_plot |
|
from kaleido.scopes.plotly import PlotlyScope |
|
import pandas as pd |
|
import markdown |
|
from comparateur import get_table_empreintes_detailed |
|
from empreinte_export import get_carbon_footprint_html |
|
|
|
def colored_circle(color): |
|
return f'<span style="display: inline-block; width: 15px; height: 15px; border-radius: 50%; background-color: {color};"></span>' |
|
|
|
def list_to_markdown(lst): |
|
return "\n".join([f'<p>{colored_circle(item["color"])} <b>{item["name"]}</b>: Pouvoir:{item["y"]}% Influence:{item["x"]}%</p>' for item in lst[:20]]) |
|
|
|
def categorize(row): |
|
if 50 <= row['pouvoir'] <= 100 and 0 <= row['influence'] < 50: |
|
return 'Rendre satisfait' |
|
elif 50 <= row['pouvoir'] <= 100 and 50 <= row['influence'] <= 100: |
|
return 'Gérer étroitement' |
|
elif 0 <= row['pouvoir'] < 50 and 0 <= row['influence'] < 50: |
|
return 'Suivre de près' |
|
elif 0 <= row['pouvoir'] < 50 and 50 <= row['influence'] <= 100: |
|
return 'Tenir informé' |
|
else: |
|
return 'Non catégorisé' |
|
|
|
|
|
|
|
@st.cache_data |
|
def convert_pp_to_csv(pp_grouped): |
|
if pp_grouped is None or len(pp_grouped) == 0: |
|
st.error("Aucune partie prenante n'a été définie") |
|
return None |
|
pp_df = pd.DataFrame(pp_grouped) |
|
pp_df.index.name = 'N°' |
|
pp_df.rename(columns={"name": "parties prenantes", "x": "influence", "y": "pouvoir"}, inplace=True) |
|
pp_df.drop(columns=['color'], inplace=True) |
|
|
|
pp_df['categorie'] = pp_df.apply(categorize, axis=1) |
|
pp_df = pp_df[["parties prenantes","categorie", "pouvoir", "influence"]] |
|
pp_df.rename_axis('N°', axis=1) |
|
return pp_df.to_csv(index=True,encoding="utf-8") |
|
|
|
@st.cache_data |
|
def create_pdf_from_markdown(logo_path, conversation,summary,brand_name,graph_html,app_url,list_pps,used_models=None): |
|
|
|
markdown_text = "\n".join([f"### {entry['speaker']}:\n {entry['text']}\n ---" for entry in conversation]) |
|
|
|
if not used_models: |
|
used_models = ["Aucun modèle IA n'a été utilisé"] |
|
html_used_models = "".join([f"<p>{model}</p>" for model in used_models]) |
|
|
|
markdown_summary = f"{summary}\n --- \n ---" |
|
markdown_list_pps = list_to_markdown(list_pps) |
|
|
|
html_content = markdown.markdown(markdown_text,extensions=['markdown.extensions.tables']) |
|
html_summary = markdown2.markdown(markdown_summary) |
|
html_list_pps = markdown2.markdown(markdown_list_pps) |
|
|
|
analysis_date = datetime.now().strftime("%Y-%m-%d") |
|
|
|
graph_html.update_layout(showlegend=False) |
|
img_bytes = PlotlyScope().transform( |
|
figure=graph_html, |
|
format="png", |
|
) |
|
fig1 = f"data:image/png;base64,{base64.b64encode(img_bytes).decode('utf8')}" |
|
|
|
|
|
html_template = f""" |
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<title>Cartographie des parties prenantes {brand_name}</title> |
|
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap" rel="stylesheet"> |
|
<style> |
|
body {{ |
|
font-family: 'Roboto', sans-serif; |
|
margin: 20px; |
|
}} |
|
h1, h2, h3, h4, h5, h6 {{ |
|
font-weight: bold; |
|
}} |
|
.page-break {{ |
|
page-break-before: always; |
|
margin: 50px; |
|
height: 50px; |
|
}} |
|
</style> |
|
</head> |
|
<body> |
|
<div style="text-align: center;"> |
|
<h1>Cartographie des parties prenantes "{brand_name}"</h1> |
|
<p>Date de l'analyse IA RSE : {analysis_date}</p> |
|
<p>IA utilisées :</p> |
|
{html_used_models} |
|
<img src="{logo_path}" alt="Logo" style="width: 150px;"/> |
|
</div> |
|
<div class="page-break"></div> |
|
<div style="text-align: center; margin-top: 20px;"> |
|
<img src="{fig1}"> |
|
</div> |
|
{html_list_pps} |
|
<div class="page-break"></div> |
|
<h2>RESUME</h2> |
|
{html_summary} |
|
<div class="page-break"></div> |
|
<h2>Historique de la Conversation</h2> |
|
{html_content} |
|
<div class="page-break"></div> |
|
{get_carbon_footprint_html()} |
|
</body> |
|
</html> |
|
""" |
|
|
|
with open("temp.html", "w",encoding="utf-8") as f: |
|
f.write(html_template) |
|
|
|
|
|
footer_html = f""" |
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap" rel="stylesheet"> |
|
<meta charset="UTF-8"> |
|
<style> |
|
body {{ |
|
font-family: 'Roboto', sans-serif; |
|
margin-top: 20px; |
|
}} |
|
.footer {{ |
|
width: 100%; |
|
font-size: 16px; |
|
display: flex; |
|
align-items: center; |
|
justify-content: space-between; |
|
padding: 10px 20px; |
|
}} |
|
.footer img {{ |
|
width: 100px; |
|
vertical-align: middle; |
|
margin-bottom: 0px; |
|
padding-bottom: 0px; |
|
|
|
}} |
|
.footer .center-text {{ |
|
text-align: center; |
|
|
|
}} |
|
.footer .page-number {{ |
|
text-align: right; |
|
}} |
|
.footer a {{ |
|
color: #0000EE; |
|
text-decoration: none; |
|
}} |
|
.page {{ |
|
font-weight: bold; |
|
font-size: 10px; |
|
margin-bottom: 0px; |
|
padding-bottom: 0px; |
|
}} |
|
|
|
</style> |
|
</head> |
|
<body> |
|
<div class="footer"> |
|
<img src="{logo_path}" alt="Logo" /> |
|
<div class="center-text"> |
|
bziiit | Open data & IA RSE | <a href="{app_url}">{app_url}</a> |
|
</div> |
|
<div class="page-number"> |
|
<span class="page"></span> |
|
</div> |
|
</div> |
|
</body> |
|
</html> |
|
""" |
|
|
|
|
|
|
|
with open("footer.html", "w",encoding="utf-8") as f: |
|
f.write(footer_html) |
|
|
|
|
|
|
|
pdf = pdfkit.from_file("temp.html", options={ |
|
'footer-html': 'footer.html', |
|
'footer-right': '[page]/[toPage]', |
|
'footer-font-size': '10', |
|
'footer-spacing': '5', |
|
'footer-line': True, |
|
'margin-top': '5', |
|
}) |
|
return pdf |
|
|
|
def get_conversation(): |
|
conversation = [] |
|
for message in st.session_state.chat_history: |
|
if isinstance(message, AIMessage): |
|
conversation.append({"speaker": "AI", "text": message.content}) |
|
elif isinstance(message, HumanMessage): |
|
conversation.append({"speaker": "Moi", "text": message.content}) |
|
return conversation |
|
|
|
|
|
def export_conversation(summary,used_models=None): |
|
brand_name = st.session_state["Nom de la marque"] |
|
app_url = "https://huggingface.co/spaces/bziiit/OpenData-Bordeaux-RSE" |
|
logo_path = "https://static.wixstatic.com/media/d7d3da_b69e03ae99224f7d8b6e358918e60071~mv2.png/v1/crop/x_173,y_0,w_1906,h_938/fill/w_242,h_119,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/BZIIIT_LOGO-HORIZ-COULEUR.png" |
|
list_pps = st.session_state['pp_grouped'] |
|
|
|
with st.spinner("Génération du PDF..."): |
|
conversation = get_conversation() |
|
image_path = "newplot.png" |
|
try: |
|
graph = construct_plot() |
|
|
|
except Exception as e: |
|
st.error("Erreur lors de la génération de la cartographie") |
|
graph = "" |
|
try: |
|
pdf = create_pdf_from_markdown(logo_path=logo_path, conversation=conversation,summary=summary,brand_name=brand_name,graph_html=graph,app_url=app_url,list_pps=list_pps,used_models=used_models) |
|
except Exception as e: |
|
pdf = None |
|
|
|
if pdf: |
|
st.success("PDF généré avec succès!}") |
|
else: |
|
st.error("Erreur lors de la génération du PDF") |
|
|
|
return pdf |
|
|
|
|
|
|