Carto-RSE / prompt.py
Ilyas KHIAT
prompts suggestions and pdf fix
f95928b
import streamlit as st
from st_copy_to_clipboard import st_copy_to_clipboard
import pandas as pd
from data_manager_bziiit import get_prompts
from langchain_core.messages import AIMessage, HumanMessage
from session import get_rag
prompts = []
def get_prompts_list():
st.header("Prompts")
prompts = get_prompts()
# Check if prompts is a list of dictionaries
if isinstance(prompts, list) and all(isinstance(i, dict) for i in prompts):
# Create a DataFrame
df = pd.DataFrame(prompts)
# Check if 'name', 'context', and 'text' are in df columns
if 'name' in df.columns and 'context' in df.columns and 'text' in df.columns:
# Filter prompts with id_context as 'rse' or 'transition'
df = df[df['id_context'].isin([
'identifier-parties-prenantes-organisation',
'animer-parties-prenantes-organisation',
'pour-accelerer-la-demarche-rse',
'pour-accelerer-la-demarche-transition-ecologique',
'ressources-humaines'
])]
# Extract 'name' from 'context' dictionary
df['context'] = df['context'].apply(lambda x: x.get('name') if isinstance(x, dict) else x)
# Get first 50 characters from 'text' and add "..." at the end
df['text'] = df['text'].apply(lambda x: x[:50] + "..." if isinstance(x, str) else x)
# Group by 'context'
grouped = df.groupby('context')
for name, group in grouped:
num = 1
with st.expander(name):
for i, row in group.iterrows():
col1, col3, col4 = st.columns((0.4, 4, 2))
col1.write(num) # index
# col2.write(row['name']) # name
col3.write(row['text']) # text
num += 1
button_phold = col4.empty() # create a placeholder
but1, but2 = button_phold.columns(2)
do_action = but1.button('Voir plus', key=f"v{i}")
execute = but2.button('Executer', key=f"e{i}")
if execute:
st.session_state.chat_history.append(HumanMessage(content=prompts[i]['text']))
st.rerun()
if do_action:
prompt_html = prompts[i]['text'].replace('\n', '<br>')
prompt_metadata = extract_metadata(prompts[i])
for text in prompt_metadata:
prompt_html = prompt_html.replace(f"{text}", f"<span style='font-weight:bold'>{text}</span>")
st.html(prompt_html)
else:
st.write("Data does not contain 'name', 'context', and 'text' fields.")
else:
st.write("Data is not in the expected format (list of dictionaries).")
def prompt_execution():
prompts = get_prompts()
selected_prompt = st.selectbox("Choisissez un prompt", prompts, index=None, format_func=lambda prompt: prompt['name'])
if selected_prompt:
return selected_prompt
return None
def execute_prompt(prompt):
# Initialiser les composants
vectorstore, chain = get_rag()
prompt_metadata = extract_metadata(prompt)
prompt['metadata'] = prompt['text']
prompt['html'] = prompt['text'].replace('\n', '<br>')
if prompt_metadata:
st.info("Données à compléter")
# Demander à l'utilisateur de fournir des valeurs pour chaque métadonnée extraite
user_inputs = {}
for text in prompt_metadata:
prompt['html'] = prompt['html'].replace(f"{text}", f"<span style='font-weight:bold'>{text}</span>")
user_input = st.text_input(f"{text}")
user_inputs[text] = user_input # Stocker la valeur de l'entrée utilisateur
# Remplacer les valeurs par le texte correspondant dans prompt['text']
for key, value in user_inputs.items():
if value:
prompt['html'] = prompt['html'].replace(f"{key}", f"<span style='color:#63ABDF;font-weight:bold' title='{key}'>{value}</span>")
prompt['metadata'] = prompt['metadata'].replace(f"{key}", f"{value}")
# Afficher les informations du prompt
if prompt_metadata:
st.markdown("---")
st.html(prompt.get('html', 'No Text Provided'))
if vectorstore and chain:
if st.button("Exécuter le prompt"):
with st.spinner("Processing..."):
ambition = chain.invoke(prompt['metadata'])
st.markdown("### Réponse :")
st.markdown(ambition.content)
else:
st.error("RAG non configuré. Veuillez configurer votre RAG pour exécuter le prompt.")
# Extraire le texte entre crochets dans le prompt
def extract_metadata(prompt):
extracted_text = []
if 'text' in prompt:
extracted_text = [word for word in prompt['text'].split() if word.startswith("[") and word.endswith("]")]
# Supprimer les doublons et trier les métadonnées extraites
prompt_metadata = list(set(extracted_text))
prompt_metadata.sort(key=extracted_text.index) # Conserver l'ordre d'apparition initial
return prompt_metadata