from PIL import Image | |
import numpy as np | |
import torch | |
from .view_base import BaseView | |
class NegateView(BaseView): | |
def __init__(self): | |
pass | |
def view(self, im): | |
return -im | |
def inverse_view(self, noise): | |
''' | |
Negating the variance estimate is "weird" so just don't do it. | |
This hack seems to work just fine | |
''' | |
invert_mask = torch.ones_like(noise) | |
invert_mask[:3] = -1 | |
return noise * invert_mask | |
def make_frame(self, im, t): | |
im_size = im.size[0] | |
frame_size = int(im_size * 1.5) | |
# map t from [0, 1] -> [1, -1] | |
t = 1 - t | |
t = t * 2 - 1 | |
# Interpolate from pixels from [0, 1] to [1, 0] | |
im = np.array(im) / 255. | |
im = ((2 * im - 1) * t + 1) / 2. | |
im = Image.fromarray((im * 255.).astype(np.uint8)) | |
# Paste on to canvas | |
frame = Image.new('RGB', (frame_size, frame_size), (255, 255, 255)) | |
frame.paste(im, ((frame_size - im_size) // 2, (frame_size - im_size) // 2)) | |
return frame | |