import gradio as gr | |
from transformers import pipeline | |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
def predict(input_img): | |
predictions = pipeline(input_img) | |
return input_img, {p["label"]: p["score"] for p in predictions} | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image( | |
label="Select hot dog candidate", sources=["upload", "webcam"], type="pil" | |
), | |
outputs=[ | |
gr.Image(label="Processed Image"), | |
gr.Label(label="Result", num_top_classes=2), | |
], | |
title="Hot Dog? Or Not?", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |