callum-canavan commited on
Commit
45c0347
·
1 Parent(s): cca580a

Update app filename

Browse files
Files changed (3) hide show
  1. app.py +76 -52
  2. bapp.py +0 -92
  3. test_app.py +68 -0
app.py CHANGED
@@ -1,68 +1,92 @@
1
- from diffusers import DiffusionPipeline
2
- from diffusers.utils import pt_to_pil
 
3
  import gradio as gr
4
  import torch
5
- import numpy as np
 
6
 
 
 
 
 
7
 
8
  stage_1 = DiffusionPipeline.from_pretrained(
9
- "DeepFloyd/IF-I-M-v1.0", variant="fp16", torch_dtype=torch.float16
10
- )
11
- stage_1.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
12
- stage_1.enable_model_cpu_offload()
13
  stage_2 = DiffusionPipeline.from_pretrained(
14
- "DeepFloyd/IF-II-M-v1.0",
15
- text_encoder=None,
16
- variant="fp16",
17
- torch_dtype=torch.float16,
18
- )
19
- stage_2.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
20
  stage_2.enable_model_cpu_offload()
21
 
22
- # stage 3
23
- safety_modules = {
24
- "feature_extractor": stage_1.feature_extractor,
25
- "safety_checker": stage_1.safety_checker,
26
- "watermarker": stage_1.watermarker,
27
- }
28
- stage_3 = DiffusionPipeline.from_pretrained(
29
- "stabilityai/stable-diffusion-x4-upscaler",
30
- **safety_modules,
31
- torch_dtype=torch.float16
32
- )
33
- stage_3.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
34
- stage_3.enable_model_cpu_offload()
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- def predict(prompt):
38
- prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
39
- generator = torch.manual_seed(0)
40
- image = stage_1(
41
- prompt_embeds=prompt_embeds,
42
- negative_prompt_embeds=negative_embeds,
43
- generator=generator,
44
- output_type="pt",
45
- ).images
46
- image = stage_2(
47
- image=image,
48
- prompt_embeds=prompt_embeds,
49
- negative_prompt_embeds=negative_embeds,
50
- generator=generator,
51
- output_type="pt",
52
- ).images
53
- image = stage_3(
54
- prompt=prompt, image=image, generator=generator, noise_level=100
55
- ).images[0]
56
- return image
57
 
 
 
 
 
 
 
 
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  gradio_app = gr.Interface(
60
- fn=predict,
61
- inputs="text",
62
- outputs="image",
63
- title="Text to Image Generator",
64
- description="Enter a text string to generate an image.",
 
 
 
 
 
 
65
  )
66
 
 
67
  if __name__ == "__main__":
68
- gradio_app.launch(server_name="0.0.0.0") # server_name="0.0.0.0"
 
1
+ import argparse
2
+ from pathlib import Path
3
+
4
  import gradio as gr
5
  import torch
6
+ from diffusers import DiffusionPipeline
7
+ from icecream import ic
8
 
9
+ from visual_anagrams.views import get_views, VIEW_MAP_NAMES
10
+ from visual_anagrams.samplers import sample_stage_1, sample_stage_2
11
+ from visual_anagrams.utils import add_args, save_illusion, save_metadata
12
+ from visual_anagrams.animate import animate_two_view
13
 
14
  stage_1 = DiffusionPipeline.from_pretrained(
15
+ "DeepFloyd/IF-I-M-v1.0",
16
+ variant="fp16",
17
+ torch_dtype=torch.float16)
 
18
  stage_2 = DiffusionPipeline.from_pretrained(
19
+ "DeepFloyd/IF-II-M-v1.0",
20
+ text_encoder=None,
21
+ variant="fp16",
22
+ torch_dtype=torch.float16,
23
+ )
24
+ stage_1.enable_model_cpu_offload()
25
  stage_2.enable_model_cpu_offload()
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ def generate_content(
29
+ style,
30
+ prompt_for_original,
31
+ prompt_for_transformed,
32
+ transformation,
33
+ num_inference_steps,
34
+ seed
35
+ ):
36
+ prompts = [f'{style} {p}'.strip() for p in [prompt_for_original, prompt_for_transformed]]
37
+ prompt_embeds = [stage_1.encode_prompt(p) for p in prompts]
38
+ prompt_embeds, negative_prompt_embeds = zip(*prompt_embeds)
39
+ prompt_embeds = torch.cat(prompt_embeds)
40
+ negative_prompt_embeds = torch.cat(negative_prompt_embeds)
41
+
42
+ views = ['identity', VIEW_MAP_NAMES[transformation]]
43
+ views = get_views(views)
44
 
45
+ generator = torch.manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ print("Sample stage 1")
48
+ image = sample_stage_1(stage_1,
49
+ prompt_embeds,
50
+ negative_prompt_embeds,
51
+ views,
52
+ num_inference_steps=num_inference_steps,
53
+ generator=generator)
54
 
55
+ print("Sample stage 2")
56
+ image = sample_stage_2(stage_2,
57
+ image,
58
+ prompt_embeds,
59
+ negative_prompt_embeds,
60
+ views,
61
+ num_inference_steps=num_inference_steps,
62
+ generator=generator)
63
+ save_illusion(image, views, Path(""))
64
+
65
+ size = image.shape[-1]
66
+ animate_two_view(
67
+ f"sample_{size}.png",
68
+ views[1],
69
+ prompts[0],
70
+ prompts[1],
71
+ )
72
+ return 'tmp.mp4', f"sample_{size}.png", f"sample_{size}.views.png"
73
+
74
+
75
+ choices = list(VIEW_MAP_NAMES.keys())
76
  gradio_app = gr.Interface(
77
+ fn=generate_content,
78
+ title="Multi-View Illusion Diffusion",
79
+ inputs=[
80
+ gr.Textbox(label="Style", placeholder="an oil painting of"),
81
+ gr.Textbox(label="Prompt for original view", placeholder="a dress"),
82
+ gr.Textbox(label="Prompt for transformed view", placeholder="an old man"),
83
+ gr.Dropdown(label="View transformation", choices=choices, value=choices[0]),
84
+ gr.Number(label="Number of diffusion steps", value=75, step=1, minimum=1, maximum=300),
85
+ gr.Number(label="Random seed", value=0, step=1, minimum=0, maximum=100000)
86
+ ],
87
+ outputs=[gr.Video(label="Illusion"), gr.Image(label="Original"), gr.Image(label="Transformed")],
88
  )
89
 
90
+
91
  if __name__ == "__main__":
92
+ gradio_app.launch() # server_name="0.0.0.0"
bapp.py DELETED
@@ -1,92 +0,0 @@
1
- import argparse
2
- from pathlib import Path
3
-
4
- import gradio as gr
5
- import torch
6
- from diffusers import DiffusionPipeline
7
- from icecream import ic
8
-
9
- from visual_anagrams.views import get_views, VIEW_MAP_NAMES
10
- from visual_anagrams.samplers import sample_stage_1, sample_stage_2
11
- from visual_anagrams.utils import add_args, save_illusion, save_metadata
12
- from visual_anagrams.animate import animate_two_view
13
-
14
- stage_1 = DiffusionPipeline.from_pretrained(
15
- "DeepFloyd/IF-I-M-v1.0",
16
- variant="fp16",
17
- torch_dtype=torch.float16)
18
- stage_2 = DiffusionPipeline.from_pretrained(
19
- "DeepFloyd/IF-II-M-v1.0",
20
- text_encoder=None,
21
- variant="fp16",
22
- torch_dtype=torch.float16,
23
- )
24
- stage_1.enable_model_cpu_offload()
25
- stage_2.enable_model_cpu_offload()
26
-
27
-
28
- def generate_content(
29
- style,
30
- prompt_for_original,
31
- prompt_for_transformed,
32
- transformation,
33
- num_inference_steps,
34
- seed
35
- ):
36
- prompts = [f'{style} {p}'.strip() for p in [prompt_for_original, prompt_for_transformed]]
37
- prompt_embeds = [stage_1.encode_prompt(p) for p in prompts]
38
- prompt_embeds, negative_prompt_embeds = zip(*prompt_embeds)
39
- prompt_embeds = torch.cat(prompt_embeds)
40
- negative_prompt_embeds = torch.cat(negative_prompt_embeds)
41
-
42
- views = ['identity', VIEW_MAP_NAMES[transformation]]
43
- views = get_views(views)
44
-
45
- generator = torch.manual_seed(seed)
46
-
47
- print("Sample stage 1")
48
- image = sample_stage_1(stage_1,
49
- prompt_embeds,
50
- negative_prompt_embeds,
51
- views,
52
- num_inference_steps=num_inference_steps,
53
- generator=generator)
54
-
55
- print("Sample stage 2")
56
- image = sample_stage_2(stage_2,
57
- image,
58
- prompt_embeds,
59
- negative_prompt_embeds,
60
- views,
61
- num_inference_steps=num_inference_steps,
62
- generator=generator)
63
- save_illusion(image, views, Path(""))
64
-
65
- size = image.shape[-1]
66
- animate_two_view(
67
- f"sample_{size}.png",
68
- views[1],
69
- prompts[0],
70
- prompts[1],
71
- )
72
- return 'tmp.mp4', f"sample_{size}.png", f"sample_{size}.views.png"
73
-
74
-
75
- choices = list(VIEW_MAP_NAMES.keys())
76
- gradio_app = gr.Interface(
77
- fn=generate_content,
78
- title="Multi-View Illusion Diffusion",
79
- inputs=[
80
- gr.Textbox(label="Style", placeholder="an oil painting of"),
81
- gr.Textbox(label="Prompt for original view", placeholder="a dress"),
82
- gr.Textbox(label="Prompt for transformed view", placeholder="an old man"),
83
- gr.Dropdown(label="View transformation", choices=choices, value=choices[0]),
84
- gr.Number(label="Number of diffusion steps", value=50, step=1, minimum=1, maximum=300),
85
- gr.Number(label="Random seed", value=0, step=1, minimum=0, maximum=100000)
86
- ],
87
- outputs=[gr.Video(label="Illusion"), gr.Image(label="Original"), gr.Image(label="Transformed")],
88
- )
89
-
90
-
91
- if __name__ == "__main__":
92
- gradio_app.launch(server_name="0.0.0.0") # server_name="0.0.0.0"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test_app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import DiffusionPipeline
2
+ from diffusers.utils import pt_to_pil
3
+ import gradio as gr
4
+ import torch
5
+ import numpy as np
6
+
7
+
8
+ stage_1 = DiffusionPipeline.from_pretrained(
9
+ "DeepFloyd/IF-I-M-v1.0", variant="fp16", torch_dtype=torch.float16
10
+ )
11
+ stage_1.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
12
+ stage_1.enable_model_cpu_offload()
13
+ stage_2 = DiffusionPipeline.from_pretrained(
14
+ "DeepFloyd/IF-II-M-v1.0",
15
+ text_encoder=None,
16
+ variant="fp16",
17
+ torch_dtype=torch.float16,
18
+ )
19
+ stage_2.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
20
+ stage_2.enable_model_cpu_offload()
21
+
22
+ # stage 3
23
+ safety_modules = {
24
+ "feature_extractor": stage_1.feature_extractor,
25
+ "safety_checker": stage_1.safety_checker,
26
+ "watermarker": stage_1.watermarker,
27
+ }
28
+ stage_3 = DiffusionPipeline.from_pretrained(
29
+ "stabilityai/stable-diffusion-x4-upscaler",
30
+ **safety_modules,
31
+ torch_dtype=torch.float16
32
+ )
33
+ stage_3.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0
34
+ stage_3.enable_model_cpu_offload()
35
+
36
+
37
+ def predict(prompt):
38
+ prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
39
+ generator = torch.manual_seed(0)
40
+ image = stage_1(
41
+ prompt_embeds=prompt_embeds,
42
+ negative_prompt_embeds=negative_embeds,
43
+ generator=generator,
44
+ output_type="pt",
45
+ ).images
46
+ image = stage_2(
47
+ image=image,
48
+ prompt_embeds=prompt_embeds,
49
+ negative_prompt_embeds=negative_embeds,
50
+ generator=generator,
51
+ output_type="pt",
52
+ ).images
53
+ image = stage_3(
54
+ prompt=prompt, image=image, generator=generator, noise_level=100
55
+ ).images[0]
56
+ return image
57
+
58
+
59
+ gradio_app = gr.Interface(
60
+ fn=predict,
61
+ inputs="text",
62
+ outputs="image",
63
+ title="Text to Image Generator",
64
+ description="Enter a text string to generate an image.",
65
+ )
66
+
67
+ if __name__ == "__main__":
68
+ gradio_app.launch(server_name="0.0.0.0") # server_name="0.0.0.0"