Spaces:
Runtime error
Runtime error
File size: 14,607 Bytes
68d33c7 cee5404 9ac7f47 cee5404 9ac7f47 cee5404 2bb90a2 80031e4 f14ea5d cee5404 f14ea5d cee5404 68d33c7 cee5404 68d33c7 cee5404 68d33c7 cee5404 68d33c7 cee5404 68d33c7 cee5404 68d33c7 cee5404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os, json, requests, runpod
import torch
import random
import comfy
from comfy.sd import load_checkpoint_guess_config
import nodes
from nodes import NODE_CLASS_MAPPINGS
from comfy_extras import nodes_post_processing, nodes_differential_diffusion, nodes_upscale_model
import numpy as np
from PIL import Image
import asyncio
import execution
import server
from nodes import load_custom_node
from math import ceil, floor
def download_file(url, save_dir='/content/ComfyUI/input'):
os.makedirs(save_dir, exist_ok=True)
file_name = url.split('/')[-1]
file_path = os.path.join(save_dir, file_name)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-AutomaticCFG")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Custom-Scripts")
load_custom_node("/content/ComfyUI/custom_nodes/Derfuu_ComfyUI_ModdedNodes")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Impact-Pack")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Inspire-Pack")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes")
load_custom_node("/content/ComfyUI/custom_nodes/comfyui_controlnet_aux")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-TiledDiffusion")
load_custom_node("/content/ComfyUI/custom_nodes/was-node-suite-comfyui")
Automatic_CFG = NODE_CLASS_MAPPINGS["Automatic CFG"]()
ImageScaleToTotalPixels = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageScaleToTotalPixels"]()
GetImageSizeAndCount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
TTPlanet_TileSimple = NODE_CLASS_MAPPINGS["TTPlanet_TileSimple_Preprocessor"]()
TiledDiffusion = NODE_CLASS_MAPPINGS["TiledDiffusion"]()
KSampler_inspire = NODE_CLASS_MAPPINGS["KSampler //Inspire"]()
ControlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
UltralyticsDetectorProvider = NODE_CLASS_MAPPINGS["UltralyticsDetectorProvider"]()
SegmDetectorSEGS = NODE_CLASS_MAPPINGS["SegmDetectorSEGS"]()
DifferentialDiffusion = nodes_differential_diffusion.NODE_CLASS_MAPPINGS["DifferentialDiffusion"]()
DetailerForEach = NODE_CLASS_MAPPINGS["DetailerForEach"]()
VAEDecodeTiled = NODE_CLASS_MAPPINGS["VAEDecodeTiled"]()
ColorMatch = NODE_CLASS_MAPPINGS["ColorMatch"]()
ImageBlend = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageBlend"]()
WAS_Image_Blending_Mode = NODE_CLASS_MAPPINGS["Image Blending Mode"]()
ImageScale = NODE_CLASS_MAPPINGS["ImageScale"]()
ImageScaleBy = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
UpscaleModelLoader = nodes_upscale_model.NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
ImageUpscaleWithModel = nodes_upscale_model.NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
with torch.inference_mode():
model_patcher, clip, vae, clipvision = load_checkpoint_guess_config("/content/ComfyUI/models/checkpoints/dreamshaperXL_lightningDPMSDE.safetensors", output_vae=True, output_clip=True, embedding_directory=None)
tile_control_net = comfy.controlnet.load_controlnet("/content/ComfyUI/models/controlnet/xinsir-controlnet-tile-sdxl-1.0.safetensors")
segm_detector = UltralyticsDetectorProvider.doit(model_name="segm/PitEyeDetailer-v2-seg.pt")
upscale_model = UpscaleModelLoader.load_model(model_name="4xRealWebPhoto_v4_dat2.safetensors")[0]
model_patcher = Automatic_CFG.patch(model=model_patcher, hard_mode=True, boost=True)[0]
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image = values['input_image_check']
input_image = download_file(input_image)
positive_prompt = values['positive_prompt']
negative_prompt = values['negative_prompt']
inspire_seed = values['inspire_seed']
inspire_steps = values['inspire_steps']
inspire_cfg = values['inspire_cfg']
inspire_sampler_name = values['inspire_sampler_name']
inspire_scheduler = values['inspire_scheduler']
inspire_denoise = values['inspire_denoise']
inspire_noise_mode = values['inspire_noise_mode']
inspire_batch_seed_mode = values['inspire_batch_seed_mode']
inspire_variation_seed = values['inspire_variation_seed']
inspire_variation_strength = values['inspire_variation_strength']
inspire_variation_method = values['inspire_variation_method']
scale_factor = values['scale_factor']
blur_strength = values['blur_strength']
strength = values['strength']
start_percent = values['start_percent']
end_percent = values['end_percent']
tile_method = values['tile_method']
tile_overlap = values['tile_overlap']
tile_size = values['tile_size']
threshold = values['threshold']
dilation = values['dilation']
crop_factor = values['crop_factor']
drop_size = values['drop_size']
labels = values['labels']
detailer_guide_size = values['detailer_guide_size']
detailer_guide_size_for_bbox = values['detailer_guide_size_for_bbox']
detailer_max_size = values['detailer_max_size']
detailer_seed = values['detailer_seed']
detailer_steps = values['detailer_steps']
detailer_cfg = values['detailer_cfg']
detailer_sampler_name = values['detailer_sampler_name']
detailer_scheduler = values['detailer_scheduler']
detailer_denoise = values['detailer_denoise']
detailer_feather = values['detailer_feather']
detailer_noise_mask = values['detailer_noise_mask']
detailer_force_inpaint = values['detailer_force_inpaint']
detailer_cycle = values['detailer_cycle']
detailer_inpaint_model = values['detailer_inpaint_model']
detailer_noise_mask_feather = values['detailer_noise_mask_feather']
color_method = values['color_method']
blend_factor = values['blend_factor']
blend_mode = values['blend_mode']
blending_mode = values['blending_mode']
blending_blend_percentage = values['blending_blend_percentage']
vram = values['vram']
upscale_mp = values['upscale_mp']
w_tiles = values['w_tiles']
h_tiles = values['h_tiles']
downscale_by = values['downscale_by']
output_image, output_mask = nodes.LoadImage().load_image(input_image)
output_image_s = ImageScaleToTotalPixels.upscale(image=output_image, upscale_method="nearest-exact", megapixels=1.0)[0]
image_width = GetImageSizeAndCount.getsize(output_image_s)["result"][1]
image_height = GetImageSizeAndCount.getsize(output_image_s)["result"][2]
w_math = ceil((image_width * upscale_mp) / 8) * 8
h_math = ceil((image_height * upscale_mp) / 8) * 8
tile_width = ceil((w_math / w_tiles) / 8) * 8
tile_height = ceil((h_math / h_tiles) / 8) * 8
tile_batch_size = floor((vram-3) / ((tile_width*tile_height) / 1000000))
upscale_image = ImageScaleBy.upscale(image=output_image, upscale_method="bilinear", scale_by=downscale_by)[0]
upscaled_image = ImageUpscaleWithModel.upscale(upscale_model=upscale_model, image=upscale_image)[0]
output_image = ImageScale.upscale(image=upscaled_image, upscale_method="bilinear", width=w_math, height=h_math, crop="disabled")[0]
cond, pooled = clip.encode_from_tokens(clip.tokenize(positive_prompt), return_pooled=True)
cond = [[cond, {"pooled_output": pooled}]]
n_cond, n_pooled = clip.encode_from_tokens(clip.tokenize(negative_prompt), return_pooled=True)
n_cond = [[n_cond, {"pooled_output": n_pooled}]]
output_image_t = TTPlanet_TileSimple.execute(output_image, scale_factor=scale_factor, blur_strength=blur_strength)[0]
positive, negative = ControlNetApplyAdvanced.apply_controlnet(positive=cond, negative=n_cond, control_net=tile_control_net, image=output_image_t, strength=strength, start_percent=start_percent, end_percent=end_percent)
tile_model = TiledDiffusion.apply(model=model_patcher, method=tile_method, tile_width=tile_width, tile_height=tile_height, tile_overlap=tile_overlap, tile_batch_size=tile_batch_size)[0]
latent_image = nodes.VAEEncode().encode(vae, output_image)[0]
inspire_sample = KSampler_inspire.doit(model=tile_model,
seed=inspire_seed,
steps=inspire_steps,
cfg=inspire_cfg,
sampler_name=inspire_sampler_name,
scheduler=inspire_scheduler,
positive=positive,
negative=negative,
latent_image=latent_image,
denoise=inspire_denoise,
noise_mode=inspire_noise_mode,
batch_seed_mode=inspire_batch_seed_mode,
variation_seed=inspire_variation_seed,
variation_strength=inspire_variation_strength,
variation_method=inspire_variation_method)[0]
tiled_decoded = VAEDecodeTiled.decode(vae=vae, samples=inspire_sample, tile_size=tile_size)[0]
segs = SegmDetectorSEGS.doit(segm_detector=segm_detector[1], image=output_image, threshold=threshold, dilation=dilation, crop_factor=crop_factor, drop_size=drop_size, labels=labels)[0]
dd_model_patcher = DifferentialDiffusion.apply(model_patcher)[0]
detailer_image = DetailerForEach.do_detail(image=tiled_decoded,
segs=segs,
model=dd_model_patcher,
clip=clip,
vae=vae,
guide_size=detailer_guide_size,
guide_size_for_bbox=detailer_guide_size_for_bbox,
max_size=detailer_max_size,
seed=detailer_seed,
steps=detailer_steps,
cfg=detailer_cfg,
sampler_name=detailer_sampler_name,
scheduler=detailer_scheduler,
positive=cond,
negative=n_cond,
denoise=detailer_denoise,
feather=detailer_feather,
noise_mask=detailer_noise_mask,
force_inpaint=detailer_force_inpaint,
cycle=detailer_cycle,
inpaint_model=detailer_inpaint_model,
noise_mask_feather=detailer_noise_mask_feather)[0]
color_image = ColorMatch.colormatch(image_ref=output_image, image_target=detailer_image, method=color_method)[0]
blend_image = ImageBlend.blend_images(image1=color_image, image2=detailer_image, blend_factor=blend_factor, blend_mode=blend_mode)[0]
blending_image = WAS_Image_Blending_Mode.image_blending_mode(image_a=blend_image, image_b=output_image, mode=blending_mode, blend_percentage=blending_blend_percentage)[0]
Image.fromarray(np.array(blending_image*255, dtype=np.uint8)[0]).save("/content/ultralytics.png")
result = "/content/ultralytics.png"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
runpod.serverless.start({"handler": generate}) |