File size: 14,607 Bytes
68d33c7
 
cee5404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac7f47
 
 
 
 
 
 
 
 
 
cee5404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac7f47
 
cee5404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb90a2
80031e4
 
 
f14ea5d
cee5404
 
 
 
 
 
 
 
 
 
f14ea5d
cee5404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d33c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee5404
 
 
68d33c7
 
 
cee5404
68d33c7
cee5404
68d33c7
cee5404
 
 
68d33c7
 
 
 
 
 
 
 
 
 
cee5404
68d33c7
 
 
 
 
 
 
 
 
 
cee5404
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os, json, requests, runpod

import torch
import random
import comfy
from comfy.sd import load_checkpoint_guess_config
import nodes
from nodes import NODE_CLASS_MAPPINGS
from comfy_extras import nodes_post_processing, nodes_differential_diffusion, nodes_upscale_model
import numpy as np
from PIL import Image
import asyncio
import execution
import server
from nodes import load_custom_node
from math import ceil, floor

def download_file(url, save_dir='/content/ComfyUI/input'):
    os.makedirs(save_dir, exist_ok=True)
    file_name = url.split('/')[-1]
    file_path = os.path.join(save_dir, file_name)
    response = requests.get(url)
    response.raise_for_status()
    with open(file_path, 'wb') as file:
        file.write(response.content)
    return file_path

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)

load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-AutomaticCFG")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Custom-Scripts")
load_custom_node("/content/ComfyUI/custom_nodes/Derfuu_ComfyUI_ModdedNodes")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Impact-Pack")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Inspire-Pack")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes")
load_custom_node("/content/ComfyUI/custom_nodes/comfyui_controlnet_aux")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-TiledDiffusion")
load_custom_node("/content/ComfyUI/custom_nodes/was-node-suite-comfyui")

Automatic_CFG = NODE_CLASS_MAPPINGS["Automatic CFG"]()
ImageScaleToTotalPixels = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageScaleToTotalPixels"]()
GetImageSizeAndCount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
TTPlanet_TileSimple = NODE_CLASS_MAPPINGS["TTPlanet_TileSimple_Preprocessor"]()
TiledDiffusion = NODE_CLASS_MAPPINGS["TiledDiffusion"]()
KSampler_inspire = NODE_CLASS_MAPPINGS["KSampler //Inspire"]()
ControlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
UltralyticsDetectorProvider = NODE_CLASS_MAPPINGS["UltralyticsDetectorProvider"]()
SegmDetectorSEGS = NODE_CLASS_MAPPINGS["SegmDetectorSEGS"]()
DifferentialDiffusion = nodes_differential_diffusion.NODE_CLASS_MAPPINGS["DifferentialDiffusion"]()
DetailerForEach = NODE_CLASS_MAPPINGS["DetailerForEach"]()
VAEDecodeTiled = NODE_CLASS_MAPPINGS["VAEDecodeTiled"]()
ColorMatch = NODE_CLASS_MAPPINGS["ColorMatch"]()
ImageBlend = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageBlend"]()
WAS_Image_Blending_Mode = NODE_CLASS_MAPPINGS["Image Blending Mode"]()
ImageScale = NODE_CLASS_MAPPINGS["ImageScale"]()
ImageScaleBy = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
UpscaleModelLoader = nodes_upscale_model.NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
ImageUpscaleWithModel = nodes_upscale_model.NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()

with torch.inference_mode():
    model_patcher, clip, vae, clipvision = load_checkpoint_guess_config("/content/ComfyUI/models/checkpoints/dreamshaperXL_lightningDPMSDE.safetensors", output_vae=True, output_clip=True, embedding_directory=None)
    tile_control_net = comfy.controlnet.load_controlnet("/content/ComfyUI/models/controlnet/xinsir-controlnet-tile-sdxl-1.0.safetensors")
    segm_detector = UltralyticsDetectorProvider.doit(model_name="segm/PitEyeDetailer-v2-seg.pt")
    upscale_model = UpscaleModelLoader.load_model(model_name="4xRealWebPhoto_v4_dat2.safetensors")[0]
    model_patcher = Automatic_CFG.patch(model=model_patcher, hard_mode=True, boost=True)[0]

@torch.inference_mode()
def generate(input):
    values = input["input"]

    input_image = values['input_image_check']
    input_image = download_file(input_image)
    positive_prompt = values['positive_prompt']
    negative_prompt = values['negative_prompt']
    inspire_seed = values['inspire_seed']
    inspire_steps = values['inspire_steps']
    inspire_cfg = values['inspire_cfg']
    inspire_sampler_name = values['inspire_sampler_name']
    inspire_scheduler = values['inspire_scheduler']
    inspire_denoise = values['inspire_denoise']
    inspire_noise_mode = values['inspire_noise_mode']
    inspire_batch_seed_mode = values['inspire_batch_seed_mode']
    inspire_variation_seed = values['inspire_variation_seed']
    inspire_variation_strength = values['inspire_variation_strength']
    inspire_variation_method = values['inspire_variation_method']
    scale_factor = values['scale_factor']
    blur_strength = values['blur_strength']
    strength = values['strength']
    start_percent = values['start_percent']
    end_percent = values['end_percent']
    tile_method = values['tile_method']
    tile_overlap = values['tile_overlap']
    tile_size = values['tile_size']
    threshold = values['threshold']
    dilation = values['dilation']
    crop_factor = values['crop_factor']
    drop_size = values['drop_size']
    labels = values['labels']
    detailer_guide_size = values['detailer_guide_size']
    detailer_guide_size_for_bbox = values['detailer_guide_size_for_bbox']
    detailer_max_size = values['detailer_max_size']
    detailer_seed = values['detailer_seed']
    detailer_steps = values['detailer_steps']
    detailer_cfg = values['detailer_cfg']
    detailer_sampler_name = values['detailer_sampler_name']
    detailer_scheduler = values['detailer_scheduler']
    detailer_denoise = values['detailer_denoise']
    detailer_feather = values['detailer_feather']
    detailer_noise_mask = values['detailer_noise_mask']
    detailer_force_inpaint = values['detailer_force_inpaint']
    detailer_cycle = values['detailer_cycle']
    detailer_inpaint_model = values['detailer_inpaint_model']
    detailer_noise_mask_feather = values['detailer_noise_mask_feather']
    color_method = values['color_method']
    blend_factor = values['blend_factor']
    blend_mode = values['blend_mode']
    blending_mode = values['blending_mode']
    blending_blend_percentage = values['blending_blend_percentage']
    vram = values['vram']
    upscale_mp = values['upscale_mp']
    w_tiles = values['w_tiles']
    h_tiles = values['h_tiles']
    downscale_by = values['downscale_by']

    output_image, output_mask = nodes.LoadImage().load_image(input_image)
    output_image_s = ImageScaleToTotalPixels.upscale(image=output_image, upscale_method="nearest-exact", megapixels=1.0)[0]
    image_width = GetImageSizeAndCount.getsize(output_image_s)["result"][1]
    image_height = GetImageSizeAndCount.getsize(output_image_s)["result"][2]
    w_math = ceil((image_width * upscale_mp) / 8) * 8
    h_math = ceil((image_height * upscale_mp) / 8) * 8
    tile_width = ceil((w_math / w_tiles) / 8) * 8
    tile_height = ceil((h_math / h_tiles) / 8) * 8
    tile_batch_size = floor((vram-3) / ((tile_width*tile_height) / 1000000))
    upscale_image = ImageScaleBy.upscale(image=output_image, upscale_method="bilinear", scale_by=downscale_by)[0]
    upscaled_image = ImageUpscaleWithModel.upscale(upscale_model=upscale_model, image=upscale_image)[0]
    output_image = ImageScale.upscale(image=upscaled_image, upscale_method="bilinear", width=w_math, height=h_math, crop="disabled")[0]

    cond, pooled = clip.encode_from_tokens(clip.tokenize(positive_prompt), return_pooled=True)
    cond = [[cond, {"pooled_output": pooled}]]
    n_cond, n_pooled = clip.encode_from_tokens(clip.tokenize(negative_prompt), return_pooled=True)
    n_cond = [[n_cond, {"pooled_output": n_pooled}]]
    output_image_t = TTPlanet_TileSimple.execute(output_image, scale_factor=scale_factor, blur_strength=blur_strength)[0]
    positive, negative = ControlNetApplyAdvanced.apply_controlnet(positive=cond, negative=n_cond, control_net=tile_control_net, image=output_image_t, strength=strength, start_percent=start_percent, end_percent=end_percent)
    tile_model = TiledDiffusion.apply(model=model_patcher, method=tile_method, tile_width=tile_width, tile_height=tile_height, tile_overlap=tile_overlap, tile_batch_size=tile_batch_size)[0]
    latent_image = nodes.VAEEncode().encode(vae, output_image)[0]
    inspire_sample = KSampler_inspire.doit(model=tile_model, 
                                            seed=inspire_seed, 
                                            steps=inspire_steps, 
                                            cfg=inspire_cfg, 
                                            sampler_name=inspire_sampler_name, 
                                            scheduler=inspire_scheduler, 
                                            positive=positive, 
                                            negative=negative,
                                            latent_image=latent_image, 
                                            denoise=inspire_denoise,
                                            noise_mode=inspire_noise_mode,
                                            batch_seed_mode=inspire_batch_seed_mode,
                                            variation_seed=inspire_variation_seed,
                                            variation_strength=inspire_variation_strength,
                                            variation_method=inspire_variation_method)[0]
    tiled_decoded = VAEDecodeTiled.decode(vae=vae, samples=inspire_sample, tile_size=tile_size)[0]
    segs = SegmDetectorSEGS.doit(segm_detector=segm_detector[1], image=output_image, threshold=threshold, dilation=dilation, crop_factor=crop_factor, drop_size=drop_size, labels=labels)[0]
    dd_model_patcher = DifferentialDiffusion.apply(model_patcher)[0]
    detailer_image = DetailerForEach.do_detail(image=tiled_decoded, 
                                        segs=segs, 
                                        model=dd_model_patcher, 
                                        clip=clip, 
                                        vae=vae, 
                                        guide_size=detailer_guide_size, 
                                        guide_size_for_bbox=detailer_guide_size_for_bbox, 
                                        max_size=detailer_max_size, 
                                        seed=detailer_seed, 
                                        steps=detailer_steps, 
                                        cfg=detailer_cfg, 
                                        sampler_name=detailer_sampler_name, 
                                        scheduler=detailer_scheduler,
                                        positive=cond, 
                                        negative=n_cond, 
                                        denoise=detailer_denoise, 
                                        feather=detailer_feather, 
                                        noise_mask=detailer_noise_mask, 
                                        force_inpaint=detailer_force_inpaint,
                                        cycle=detailer_cycle,
                                        inpaint_model=detailer_inpaint_model,
                                        noise_mask_feather=detailer_noise_mask_feather)[0]
    color_image = ColorMatch.colormatch(image_ref=output_image, image_target=detailer_image, method=color_method)[0]
    blend_image = ImageBlend.blend_images(image1=color_image, image2=detailer_image, blend_factor=blend_factor, blend_mode=blend_mode)[0]
    blending_image = WAS_Image_Blending_Mode.image_blending_mode(image_a=blend_image, image_b=output_image, mode=blending_mode, blend_percentage=blending_blend_percentage)[0]
    Image.fromarray(np.array(blending_image*255, dtype=np.uint8)[0]).save("/content/ultralytics.png")

    result = "/content/ultralytics.png"
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        default_filename = os.path.basename(result)
        with open(result, "rb") as file:
            files = {default_filename: file.read()}
        payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        response = requests.post(
            f"https://discord.com/api/v9/channels/{discord_channel}/messages",
            data=payload,
            headers={"Authorization": f"Bot {discord_token}"},
            files=files
        )
        response.raise_for_status()
        result_url = response.json()['attachments'][0]['url']
        notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": result_url, "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result):
            os.remove(result)

runpod.serverless.start({"handler": generate})