File size: 7,753 Bytes
43b249b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfcd7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b249b
 
 
cfcd7cb
 
 
43b249b
cfcd7cb
43b249b
cfcd7cb
43b249b
 
 
cfcd7cb
 
 
 
 
 
 
 
 
 
43b249b
cfcd7cb
 
 
 
 
 
 
 
 
 
43b249b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os, json, requests, runpod

import random, time
import torch
import numpy as np
from PIL import Image
import nodes
from nodes import NODE_CLASS_MAPPINGS
from nodes import load_custom_node
from comfy_extras import nodes_custom_sampler
from comfy_extras import nodes_flux
from comfy import model_management

load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-LLaVA-OneVision")
DualCLIPLoader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
UNETLoader = NODE_CLASS_MAPPINGS["UNETLoader"]()
VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]()

LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]()
FluxGuidance = nodes_flux.NODE_CLASS_MAPPINGS["FluxGuidance"]()
RandomNoise = nodes_custom_sampler.NODE_CLASS_MAPPINGS["RandomNoise"]()
BasicGuider = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicGuider"]()
KSamplerSelect = nodes_custom_sampler.NODE_CLASS_MAPPINGS["KSamplerSelect"]()
BasicScheduler = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicScheduler"]()
SamplerCustomAdvanced = nodes_custom_sampler.NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
DownloadAndLoadLLaVAOneVisionModel = NODE_CLASS_MAPPINGS["DownloadAndLoadLLaVAOneVisionModel"]()
LLaVA_OneVision_Run = NODE_CLASS_MAPPINGS["LLaVA_OneVision_Run"]()
LoadImage =  NODE_CLASS_MAPPINGS["LoadImage"]()

with torch.inference_mode():
    llava_model = DownloadAndLoadLLaVAOneVisionModel.loadmodel("lmms-lab/llava-onevision-qwen2-0.5b-si", "cuda", "bf16", "sdpa")[0]
    clip = DualCLIPLoader.load_clip("t5xxl_fp16.safetensors", "clip_l.safetensors", "flux")[0]
    unet = UNETLoader.load_unet("flux1-dev.sft", "default")[0]
    vae = VAELoader.load_vae("ae.sft")[0]

def closestNumber(n, m):
    q = int(n / m)
    n1 = m * q
    if (n * m) > 0:
        n2 = m * (q + 1)
    else:
        n2 = m * (q - 1)
    if abs(n - n1) < abs(n - n2):
        return n1
    return n2

def download_file(url, save_dir='/content/ComfyUI/input'):
    os.makedirs(save_dir, exist_ok=True)
    file_name = url.split('/')[-1]
    file_path = os.path.join(save_dir, file_name)
    response = requests.get(url)
    response.raise_for_status()
    with open(file_path, 'wb') as file:
        file.write(response.content)
    return file_path

@torch.inference_mode()
def generate(input):
    values = input["input"]

    tag_image = values['input_image_check']
    tag_image = download_file(tag_image)
    final_width = values['final_width']
    tag_prompt = values['tag_prompt']
    additional_prompt = values['additional_prompt']
    tag_seed = values['tag_seed']
    tag_temp = values['tag_temp']
    tag_max_tokens = values['tag_max_tokens']

    seed = values['seed']
    steps = values['steps']
    sampler_name = values['sampler_name']
    scheduler = values['scheduler']
    guidance = values['guidance']
    lora_strength_model = values['lora_strength_model']
    lora_strength_clip = values['lora_strength_clip']
    lora_file = values['lora_file']

    # model_management.unload_all_models()
    tag_image_width, tag_image_height = Image.open(tag_image).size
    tag_image_aspect_ratio = tag_image_width / tag_image_height
    final_height = final_width / tag_image_aspect_ratio
    tag_image = LoadImage.load_image(tag_image)[0]
    if tag_seed == 0:
        random.seed(int(time.time()))
        tag_seed = random.randint(0, 18446744073709551615)
    print(tag_seed)
    positive_prompt = LLaVA_OneVision_Run.run(tag_image, llava_model, tag_prompt, tag_max_tokens, True, tag_temp, tag_seed)[0]
    positive_prompt = f"{additional_prompt} {positive_prompt}"

    if seed == 0:
        random.seed(int(time.time()))
        seed = random.randint(0, 18446744073709551615)
    print(seed)
    unet_lora, clip_lora = LoraLoader.load_lora(unet, clip, lora_file, lora_strength_model, lora_strength_clip)
    cond, pooled = clip_lora.encode_from_tokens(clip_lora.tokenize(positive_prompt), return_pooled=True)
    cond = [[cond, {"pooled_output": pooled}]]
    cond = FluxGuidance.append(cond, guidance)[0]
    noise = RandomNoise.get_noise(seed)[0]
    guider = BasicGuider.get_guider(unet_lora, cond)[0]
    sampler = KSamplerSelect.get_sampler(sampler_name)[0]
    sigmas = BasicScheduler.get_sigmas(unet_lora, scheduler, steps, 1.0)[0]
    latent_image = EmptyLatentImage.generate(closestNumber(final_width, 16), closestNumber(final_height, 16))[0]
    sample, sample_denoised = SamplerCustomAdvanced.sample(noise, guider, sampler, sigmas, latent_image)
    decoded = VAEDecode.decode(vae, sample)[0].detach()
    Image.fromarray(np.array(decoded*255, dtype=np.uint8)[0]).save("/content/onevision_flux.png")

    result = "/content/onevision_flux.png"
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        default_filename = os.path.basename(result)
        with open(result, "rb") as file:
            files = {default_filename: file.read()}
        payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        response = requests.post(
            f"https://discord.com/api/v9/channels/{discord_channel}/messages",
            data=payload,
            headers={"Authorization": f"Bot {discord_token}"},
            files=files
        )
        response.raise_for_status()
        result_url = response.json()['attachments'][0]['url']
        notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": result_url, "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result):
            os.remove(result)

runpod.serverless.start({"handler": generate})