cedpsam's picture
Update app.py
3b13a4c
import gradio as gr
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"]="1"
from langchain.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from huggingface_hub import hf_hub_download
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF"
model_name="mistral-7b-openorca.Q5_K_M.gguf"
hf_hub_download(repo_id=repo_id,
filename=model_name,local_dir =".")
llm = LlamaCpp(
model_path=model_name,
n_ctx=4096,
callback_manager=callback_manager,
verbose=True, # Verbose is required to pass to the callback manager
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"<|im_start|>user\n {user_prompt} <|im_end|>\n"
prompt += f"<|im_start|>assistant\n {bot_response}<|im_end|>\n"
prompt += f"<|im_start|>user\n {message} <|im_end|>\n<|im_start|>assistant\n"
return prompt
def generate(
prompt, history, temperature=0.9, top_p=0.95, max_new_tokens=256,repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = format_prompt(prompt, history)
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
output=llm(formatted_prompt,
temperature=temperature,
max_tokens=max_new_tokens,
repeat_penalty=repetition_penalty,
top_p=top_p,
stop=["<|im_end|>","<|im_start|>user"]
)
# output=formatted_prompt+"ans:"+output
# for response in stream:
# output += response.token.text
# yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Max new tokens",
value=400,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
gr.HTML(f"<h3><center>it's lamacpp running {model_name} from {repo_id}<h3><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
)
demo.queue(max_size=None).launch(debug=True)