Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"]="1" | |
from langchain.llms import LlamaCpp | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from huggingface_hub import hf_hub_download | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF" | |
model_name="mistral-7b-openorca.Q5_K_M.gguf" | |
hf_hub_download(repo_id=repo_id, | |
filename=model_name,local_dir =".") | |
llm = LlamaCpp( | |
model_path=model_name, | |
n_ctx=4096, | |
callback_manager=callback_manager, | |
verbose=True, # Verbose is required to pass to the callback manager | |
) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"<|im_start|>user\n {user_prompt} <|im_end|>\n" | |
prompt += f"<|im_start|>assistant\n {bot_response}<|im_end|>\n" | |
prompt += f"<|im_start|>user\n {message} <|im_end|>\n<|im_start|>assistant\n" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, top_p=0.95, max_new_tokens=256,repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
formatted_prompt = format_prompt(prompt, history) | |
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
output=llm(formatted_prompt, | |
temperature=temperature, | |
max_tokens=max_new_tokens, | |
repeat_penalty=repetition_penalty, | |
top_p=top_p, | |
stop=["<|im_end|>","<|im_start|>user"] | |
) | |
# output=formatted_prompt+"ans:"+output | |
# for response in stream: | |
# output += response.token.text | |
# yield output | |
return output | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=400, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") | |
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") | |
gr.HTML(f"<h3><center>it's lamacpp running {model_name} from {repo_id}<h3><center>") | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] | |
) | |
demo.queue(max_size=None).launch(debug=True) |