cesar commited on
Commit
db872fc
1 Parent(s): f703357

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Deploy Barcelo demo.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
8
+
9
+ ![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
10
+
11
+ # Modelo
12
+
13
+ YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
14
+
15
+
16
+ ## Gradio Inferencia
17
+
18
+ ![](https://i.ibb.co/982NS6m/header.png)
19
+
20
+ Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
21
+
22
+
23
+ ----------------------------------------------------------------------
24
+
25
+ YOLOv5 Gradio demo
26
+
27
+ *Author: Ultralytics LLC and Gradio*
28
+
29
+ # C贸digo
30
+ """
31
+
32
+ !pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
33
+
34
+ import gradio as gr
35
+ import torch
36
+ from PIL import Image
37
+
38
+ # Images
39
+ torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg')
40
+ torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg')
41
+
42
+ # Model
43
+ #model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
44
+
45
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='/content/best.pt') # local model o google colab
46
+ #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo
47
+
48
+ def yolo(im, size=640):
49
+ g = (size / max(im.size)) # gain
50
+ im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
51
+
52
+ results = model(im) # inference
53
+ results.render() # updates results.imgs with boxes and labels
54
+ return Image.fromarray(results.imgs[0])
55
+
56
+
57
+ inputs = gr.inputs.Image(type='pil', label=" Imagen Original")
58
+ outputs = gr.outputs.Image(type="pil", label="Resultado")
59
+
60
+ title = 'Trampas Barcel贸'
61
+
62
+ description = "Sistemas de Desarrollado por Subcretar铆a de Innovaci贸n del Municipio de Vicente Lopez"
63
+
64
+ article = "<p style='text-align: center'>YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset, and includes " \
65
+ "simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, " \
66
+ "and export to ONNX, CoreML and TFLite. <a href='https://colab.research.google.com/drive/1fbeB71yD09WK2JG9P3Ladu9MEzQ2rQad?usp=sharing'>Source code</a> |" \
67
+ "<a href='https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9?usp=sharing'>Colab Deploy</a> | <a href='https://github.com/ultralytics/yolov5'>PyTorch Hub</a></p>"
68
+
69
+ examples = [['ejemplo1.jpg'], ['ejemplo2.jpg']]
70
+ gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(
71
+ debug=True)
72
+
73
+ """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
74
+
75
+
76
+ ## Citation
77
+
78
+ [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
79
+ """