Spaces:
Sleeping
Sleeping
""" Moss model configuration""" | |
from transformers.utils import logging | |
from transformers.configuration_utils import PretrainedConfig | |
logger = logging.get_logger(__name__) | |
class MossConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MossModel`]. It is used to instantiate a | |
Moss model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Moss | |
[fnlp/moss-moon-003-base](https://huggingface.co/fnlp/moss-moon-003-base) architecture. Configuration objects | |
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from | |
[`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 107008): | |
Vocabulary size of the Moss model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`MossModel`]. | |
n_positions (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_embd (`int`, *optional*, defaults to 4096): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (`int`, *optional*, defaults to 28): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
rotary_dim (`int`, *optional*, defaults to 64): | |
Number of dimensions in the embedding that Rotary Position Embedding is applied to. | |
n_inner (`int`, *optional*, defaults to None): | |
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd | |
activation_function (`str`, *optional*, defaults to `"gelu_new"`): | |
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`int`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
Example: | |
```python | |
>>> from modeling_moss import MossModel | |
>>> from configuration_moss import MossConfig | |
>>> # Initializing a moss-moon-003-base configuration | |
>>> configuration = MossConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = MossModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "moss" | |
attribute_map = { | |
"max_position_embeddings": "n_positions", | |
"hidden_size": "n_embd", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=107008, | |
n_positions=2048, | |
n_ctx=2048, | |
n_embd=4096, | |
n_layer=28, | |
n_head=16, | |
rotary_dim=64, | |
n_inner=None, | |
activation_function="gelu_new", | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attn_pdrop=0.0, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
use_cache=True, | |
bos_token_id=106028, | |
eos_token_id=106068, | |
tie_word_embeddings=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.n_inner = n_inner | |
self.rotary_dim = rotary_dim | |
self.activation_function = activation_function | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.use_cache = use_cache | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
super().__init__( | |
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | |
) | |