Spaces:
Build error
Build error
chandan2706
commited on
create app.py
Browse filestranslation gradio app file
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
================================================================================
|
2 |
+
#replace installed inference folder with inference folder of IndicTrans2
|
3 |
+
import shutil
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Source and destination paths
|
7 |
+
source_folder = "/content/Translation/IndicTrans2/inference"
|
8 |
+
destination_folder = "/usr/local/lib/python3.10/dist-packages"
|
9 |
+
|
10 |
+
# Get the folder name from the source path
|
11 |
+
folder_name = os.path.basename(source_folder)
|
12 |
+
|
13 |
+
# Create the new destination path with the folder name
|
14 |
+
new_destination_path = os.path.join(destination_folder, folder_name)
|
15 |
+
|
16 |
+
# Remove the destination folder if it exists
|
17 |
+
if os.path.exists(new_destination_path):
|
18 |
+
shutil.rmtree(new_destination_path)
|
19 |
+
|
20 |
+
# Move the folder
|
21 |
+
shutil.copytree(source_folder, new_destination_path)
|
22 |
+
|
23 |
+
================================================================================
|
24 |
+
|
25 |
+
|
26 |
+
# Import necessary libraries
|
27 |
+
import requests
|
28 |
+
from dotenv import load_dotenv
|
29 |
+
import os
|
30 |
+
import gradio as gr
|
31 |
+
import pandas as pd
|
32 |
+
from mahaNLP.tagger import EntityRecognizer
|
33 |
+
from inference.engine import Model
|
34 |
+
from ai4bharat.transliteration import XlitEngine
|
35 |
+
|
36 |
+
# Initialize models
|
37 |
+
model = Model(r"/content/Translation/indic-en/fairseq_model", model_type="fairseq")
|
38 |
+
model2 = EntityRecognizer()
|
39 |
+
model4 = Model(r"/content/Translation/en-indic/fairseq_model", model_type="fairseq")
|
40 |
+
e = XlitEngine(beam_width=10, src_script_type="indic")
|
41 |
+
|
42 |
+
# Function to load Marathi suffixes from file
|
43 |
+
def load_marathi_suffixes(file_path):
|
44 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
45 |
+
suffixes = [line.strip() for line in file]
|
46 |
+
return suffixes
|
47 |
+
|
48 |
+
marathi_suffixes = load_marathi_suffixes(r"/content/Translation/marathi_stopwords.txt")
|
49 |
+
|
50 |
+
# Function to get suffix of a word
|
51 |
+
def get_suffix(word, suffixes):
|
52 |
+
for suffix in suffixes:
|
53 |
+
if word.endswith(suffix):
|
54 |
+
main_word = word[:-len(suffix)].strip()
|
55 |
+
return main_word, suffix
|
56 |
+
return word, ''
|
57 |
+
|
58 |
+
# Function to perform Named Entity Recognition (NER) and handle suffixes separately
|
59 |
+
def ner_tagger(text, suffixes):
|
60 |
+
tag = model2.get_token_labels(text)
|
61 |
+
tokens = [(row.word, row.entity_group) for row in tag.itertuples(index=False)]
|
62 |
+
combined_tokens = []
|
63 |
+
for word, entity in tokens:
|
64 |
+
if entity == "Person":
|
65 |
+
main_word, suffix = get_suffix(word, suffixes)
|
66 |
+
combined_tokens.append((main_word, "Person"))
|
67 |
+
if suffix:
|
68 |
+
combined_tokens.append((suffix, "Other"))
|
69 |
+
else:
|
70 |
+
combined_tokens.append((word, entity))
|
71 |
+
return combined_tokens
|
72 |
+
|
73 |
+
# Function to transliterate person tokens
|
74 |
+
def transliterate_person_tokens(tokens):
|
75 |
+
transliterated_tokens = []
|
76 |
+
for token, label in tokens:
|
77 |
+
if label == 'Person':
|
78 |
+
split_token = token.rsplit(' ', 1)
|
79 |
+
if len(split_token) > 1:
|
80 |
+
main_name, suffix = split_token
|
81 |
+
else:
|
82 |
+
main_name = split_token[0]
|
83 |
+
suffix = ''
|
84 |
+
transliterated_main_name = e.translit_sentence(main_name, 'mr')
|
85 |
+
transliterated_token = transliterated_main_name + (' ' + suffix if suffix else '')
|
86 |
+
transliterated_tokens.append((transliterated_token, label))
|
87 |
+
else:
|
88 |
+
transliterated_tokens.append((token, label))
|
89 |
+
return transliterated_tokens
|
90 |
+
|
91 |
+
# Function to transliterate only person tags and maintain their positions
|
92 |
+
def transliterate_person_tags_only(text, suffixes):
|
93 |
+
# Perform Named Entity Recognition (NER)
|
94 |
+
tokens = ner_tagger(text, suffixes)
|
95 |
+
|
96 |
+
# Transliterate person tags only
|
97 |
+
transliterated_text = []
|
98 |
+
original_person_tokens = {} # To store the transliterated person tokens and their original positions
|
99 |
+
index_offset = 0 # Offset for adjusting index when inserting placeholders
|
100 |
+
for index, (token, label) in enumerate(tokens):
|
101 |
+
if label == 'Person':
|
102 |
+
# Transliterate the token
|
103 |
+
transliterated_token = transliterate_person_tokens([(token, label)])
|
104 |
+
original_person_tokens[index] = transliterated_token[0][0] # Store transliterated token and original position
|
105 |
+
transliterated_text.append(f"[PERSON{index}]") # Add a placeholder for the transliterated person token
|
106 |
+
index_offset += 1 # Increase offset after inserting a placeholder
|
107 |
+
else:
|
108 |
+
transliterated_text.append(token)
|
109 |
+
|
110 |
+
return transliterated_text, original_person_tokens
|
111 |
+
|
112 |
+
|
113 |
+
def count_person_tags(text, suffixes):
|
114 |
+
# Perform Named Entity Recognition (NER)
|
115 |
+
tokens = ner_tagger(text, suffixes)
|
116 |
+
|
117 |
+
# Count the number of person tags
|
118 |
+
person_count = sum(1 for token, label in tokens if label == 'Person')
|
119 |
+
|
120 |
+
return person_count
|
121 |
+
|
122 |
+
|
123 |
+
def process_text(text, src_lang, tgt_lang, suffixes):
|
124 |
+
# Count the number of person tags
|
125 |
+
num_person_tags = count_person_tags(text, suffixes)
|
126 |
+
|
127 |
+
if num_person_tags > 6:
|
128 |
+
# Translate the text directly
|
129 |
+
translated_text = model.batch_translate([text], src_lang, tgt_lang)[0]
|
130 |
+
else:
|
131 |
+
# Transliterate person tags only
|
132 |
+
transliterated_text, original_person_tokens = transliterate_person_tags_only(text, suffixes)
|
133 |
+
|
134 |
+
# Translate the transliterated text
|
135 |
+
translated_text = model.batch_translate([' '.join(transliterated_text)], src_lang, tgt_lang)[0]
|
136 |
+
|
137 |
+
# Replace the placeholders with original person tokens in their original positions
|
138 |
+
for index, transliterated_token in original_person_tokens.items():
|
139 |
+
translated_text = translated_text.replace(f"[PERSON{index}]", transliterated_token, 1)
|
140 |
+
|
141 |
+
return translated_text
|
142 |
+
|
143 |
+
|
144 |
+
def translate_sentence_with_replacements(model, df, input_text):
|
145 |
+
# Translate the original sentence
|
146 |
+
translated_sentence = model.batch_translate([input_text], "eng_Latn", "mar_Deva")[0]
|
147 |
+
|
148 |
+
# Tokenize the original sentence
|
149 |
+
sentence_tokens = input_text.lower().split()
|
150 |
+
|
151 |
+
# Find all rows where eng_Latn phrases match as whole phrases in the original sentence
|
152 |
+
mask = df['eng_Latn'].apply(lambda x: all(word in sentence_tokens for word in x.lower().split()))
|
153 |
+
filtered_df = df[mask]
|
154 |
+
|
155 |
+
# Store replacements
|
156 |
+
replacements = {}
|
157 |
+
for _, row in filtered_df.iterrows():
|
158 |
+
mar_wrong_word = row['mar_Deva_wrong']
|
159 |
+
mar_correct_word = row['mar_Deva']
|
160 |
+
if isinstance(mar_wrong_word, str) and isinstance(mar_correct_word, str):
|
161 |
+
if mar_wrong_word in translated_sentence and mar_wrong_word not in replacements:
|
162 |
+
translated_sentence = translated_sentence.replace(mar_wrong_word, mar_correct_word)
|
163 |
+
replacements[mar_wrong_word] = mar_correct_word
|
164 |
+
|
165 |
+
return translated_sentence
|
166 |
+
|
167 |
+
# Read the DataFrame
|
168 |
+
df1 = pd.read_excel(r"/content/Translation/Final_Translation_Data.xlsx")
|
169 |
+
|
170 |
+
|
171 |
+
# Function to translate Marathi to English
|
172 |
+
def translate_marathi_to_english(input_text):
|
173 |
+
translated_text_en = process_text(input_text, "mar_Deva", "eng_Latn", marathi_suffixes)
|
174 |
+
return translated_text_en
|
175 |
+
|
176 |
+
# Define the translation function for English to Marathi
|
177 |
+
def translate_english_to_marathi(input_text):
|
178 |
+
translated_text_mr = translate_sentence_with_replacements(model4, df1, input_text)
|
179 |
+
return translated_text_mr
|
180 |
+
|
181 |
+
# Define the translation function for English to Hindi
|
182 |
+
def translate_english_to_hindi(input_text):
|
183 |
+
translated_text_hi = model4.batch_translate(input_text, "eng_Latn", "hin_Deva")[0]
|
184 |
+
return translated_text_hi
|
185 |
+
|
186 |
+
# Define the translation function for Hindi to English
|
187 |
+
def translate_hindi_to_english(input_text):
|
188 |
+
translated_text_en = model.translate_paragraph(input_text, "hin_Deva", "eng_Latn")
|
189 |
+
return translated_text_en
|
190 |
+
|
191 |
+
# Define the translation function for Gradio
|
192 |
+
def translate_with_gradio(input_text, src_lang, tgt_lang):
|
193 |
+
if src_lang == "Marathi" and tgt_lang == "English":
|
194 |
+
return translate_marathi_to_english(input_text)
|
195 |
+
elif src_lang == "English" and tgt_lang == "Marathi":
|
196 |
+
return translate_english_to_marathi(input_text)
|
197 |
+
elif src_lang == "English" and tgt_lang == "Hindi":
|
198 |
+
return translate_english_to_hindi(input_text)
|
199 |
+
elif src_lang == "Hindi" and tgt_lang == "English":
|
200 |
+
return translate_hindi_to_english(input_text)
|
201 |
+
else:
|
202 |
+
return "Translation direction not supported"
|
203 |
+
|
204 |
+
languages = ['English', 'Marathi', 'Hindi']
|
205 |
+
# Create the Gradio interface
|
206 |
+
demo = gr.Interface(
|
207 |
+
fn=translate_with_gradio,
|
208 |
+
inputs=[
|
209 |
+
gr.Text(label="Enter text"),
|
210 |
+
gr.Dropdown(label="From",choices=languages,value="Marathi",),
|
211 |
+
gr.Dropdown(label="To",choices=languages,value="English")
|
212 |
+
],
|
213 |
+
outputs=gr.Textbox(label="Translation"),
|
214 |
+
title="Multilingual Translation",
|
215 |
+
description="Translate text between Marathi to English & English to Marathi and Hindi to English & English to Hindi",
|
216 |
+
)
|
217 |
+
|
218 |
+
# Launch the interface
|
219 |
+
demo.launch(share=True)
|