Spaces:
Sleeping
Sleeping
File size: 18,622 Bytes
e5725a3 ae17679 a3a9516 9ca5709 349c343 a1430d2 e3a164f 13272b6 349c343 fcc28fc a1430d2 1d804c6 c651799 ae17679 7700f9c 1df330b b3bde95 73d048f b3bde95 73d048f b3bde95 55d784d af7cd47 55d784d 73d048f d82a572 629e8c6 d82a572 629e8c6 a1430d2 629e8c6 d82a572 629e8c6 a1430d2 eba85a0 a4f9cd0 0512804 3ffe660 0512804 a1430d2 c1d72c2 de4d793 349c343 86c245c 349c343 a1430d2 349c343 71e0dac 9e14ade 93e5809 9e14ade 71e0dac 349c343 7342691 7dca0e3 349c343 eba85a0 349c343 8248004 349c343 629e8c6 349c343 13272b6 349c343 d82a572 349c343 629e8c6 d7c22fb 629e8c6 349c343 73d048f 6917255 a1430d2 629e8c6 d82a572 eba85a0 4495d82 23d7269 a1430d2 b3bde95 23d7269 d82a572 23d7269 4495d82 23d7269 73d048f 4495d82 73d048f 6f7615d fcc28fc 73d048f fcc28fc 73d048f 6f7615d 93e5809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import re
import json
import copy
import gradio as gr
from llama2 import GradioLLaMA2ChatPPManager
from llama2 import gen_text
from styles import MODEL_SELECTION_CSS
from js import GET_LOCAL_STORAGE, UPDATE_LEFT_BTNS_STATE, UPDATE_PLACEHOLDERS
from templates import templates
from constants import DEFAULT_GLOBAL_CTX
from pingpong import PingPong
from pingpong.context import CtxLastWindowStrategy
TOKEN = os.getenv('HF_TOKEN')
MODEL_ID = 'meta-llama/Llama-2-70b-chat-hf'
def build_prompts(ppmanager, global_context, win_size=3):
dummy_ppm = copy.deepcopy(ppmanager)
dummy_ppm.ctx = global_context
lws = CtxLastWindowStrategy(win_size)
return lws(dummy_ppm)
ex_file = open("examples.txt", "r")
examples = ex_file.read().split("\n")
ex_btns = []
chl_file = open("channels.txt", "r")
channels = chl_file.read().split("\n")
channel_btns = []
def get_placeholders(text):
"""Returns all substrings in between <placeholder> and </placeholder>."""
pattern = r"\[([^\]]*)\]"
matches = re.findall(pattern, text)
return matches
def fill_up_placeholders(txt):
placeholders = get_placeholders(txt)
highlighted_txt = txt
return (
gr.update(
visible=True,
value=highlighted_txt
),
gr.update(
visible=True if len(placeholders) >= 1 else False,
placeholder=placeholders[0] if len(placeholders) >= 1 else ""
),
gr.update(
visible=True if len(placeholders) >= 2 else False,
placeholder=placeholders[1] if len(placeholders) >= 2 else ""
),
gr.update(
visible=True if len(placeholders) >= 3 else False,
placeholder=placeholders[2] if len(placeholders) >= 3 else ""
),
"" if len(placeholders) >= 1 else txt
)
async def rollback_last(
idx, local_data, chat_state,
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv
):
res = [
chat_state["ppmanager_type"].from_json(json.dumps(ppm))
for ppm in local_data
]
ppm = res[idx]
last_user_message = res[idx].pingpongs[-1].ping
res[idx].pingpongs = res[idx].pingpongs[:-1]
ppm.add_pingpong(
PingPong(last_user_message, "")
)
prompt = build_prompts(ppm, global_context, ctx_num_lconv)
async for result in gen_text(
prompt, hf_model=MODEL_ID, hf_token=TOKEN,
parameters={
'max_new_tokens': res_mnts,
'do_sample': res_sample,
'return_full_text': False,
'temperature': res_temp,
'top_k': res_topk,
'repetition_penalty': res_rpen
}
):
ppm.append_pong(result)
yield prompt, ppm.build_uis(), str(res), gr.update(interactive=False)
yield prompt, ppm.build_uis(), str(res), gr.update(interactive=True)
def reset_chat(idx, ld, state):
res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
res[idx].pingpongs = []
return (
"",
[],
str(res),
gr.update(visible=True),
gr.update(interactive=False),
)
def internet_search(ppmanager, serper_api_key, global_context, ctx_num_lconv, device="cpu"):
internet_search_ppm = copy.deepcopy(ppm)
internet_search_prompt = f"My question is '{user_msg}'. Based on the conversation history, "
f"give me an appropriate query to answer my question for google search. "
f"You should not say more than query. You should not say any words except the query."
internet_search_ppm.pingpongs[-1].ping = internet_search_prompt
internet_search_prompt = build_prompts(internet_search_ppm, "", win_size=ctx_num_lconv)
instruction = gen_text_none_stream(internet_search_prompt, hf_model=MODEL_ID, hf_token=TOKEN)
###
searcher = SimilaritySearcher.from_pretrained(device=device)
iss = InternetSearchStrategy(
searcher,
instruction=instruction,
serper_api_key=serper_api_key
)(ppmanager)
step_ppm = None
while True:
try:
step_ppm, _ = next(iss)
yield "", step_ppm.build_uis()
except StopIteration:
break
search_prompt = build_prompts(step_ppm, global_context, ctx_num_lconv)
yield search_prompt, ppmanager.build_uis()
async def chat_stream(
idx, local_data, instruction_txtbox, chat_state,
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv,
internet_option, serper_api_key
):
res = [
chat_state["ppmanager_type"].from_json(json.dumps(ppm))
for ppm in local_data
]
ppm = res[idx]
ppm.add_pingpong(
PingPong(instruction_txtbox, "")
)
prompt = build_prompts(ppm, global_context, ctx_num_lconv)
#######
if internet_option:
search_prompt = None
for tmp_prompt, uis in internet_search(ppm, serper_api_key, global_context, ctx_num_lconv):
search_prompt = tmp_prompt
yield "", uis, prompt, str(res)
async for result in gen_text(
prompt, hf_model=MODEL_ID, hf_token=TOKEN,
parameters={
'max_new_tokens': res_mnts,
'do_sample': res_sample,
'return_full_text': False,
'temperature': res_temp,
'top_k': res_topk,
'repetition_penalty': res_rpen
}
):
ppm.append_pong(result)
yield "", prompt, ppm.build_uis(), str(res), gr.update(interactive=False)
yield "", prompt, ppm.build_uis(), str(res), gr.update(interactive=True)
def channel_num(btn_title):
choice = 0
for idx, channel in enumerate(channels):
if channel == btn_title:
choice = idx
return choice
def set_chatbot(btn, ld, state):
choice = channel_num(btn)
res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
empty = len(res[choice].pingpongs) == 0
return (res[choice].build_uis(), choice, gr.update(visible=empty), gr.update(interactive=not empty))
def set_example(btn):
return btn, gr.update(visible=False)
def get_final_template(
txt, placeholder_txt1, placeholder_txt2, placeholder_txt3
):
placeholders = get_placeholders(txt)
example_prompt = txt
if len(placeholders) >= 1:
if placeholder_txt1 != "":
example_prompt = example_prompt.replace(f"[{placeholders[0]}]", placeholder_txt1)
if len(placeholders) >= 2:
if placeholder_txt2 != "":
example_prompt = example_prompt.replace(f"[{placeholders[1]}]", placeholder_txt2)
if len(placeholders) >= 3:
if placeholder_txt3 != "":
example_prompt = example_prompt.replace(f"[{placeholders[2]}]", placeholder_txt3)
return (
example_prompt,
"",
"",
""
)
with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
with gr.Column() as chat_view:
idx = gr.State(0)
chat_state = gr.State({
"ppmanager_type": GradioLLaMA2ChatPPManager
})
local_data = gr.JSON({}, visible=False)
gr.Markdown("## LLaMA2 70B with Gradio Chat and Hugging Face Inference API", elem_classes=["center"])
gr.Markdown(
"This space demonstrates how to build feature rich chatbot UI in [Gradio](https://www.gradio.app/). Supported features "
"include • multiple chatting channels, • chat history save/restoration, • stop generating text response, • regenerate the "
"last conversation, • clean the chat history, • dynamic kick-starting prompt templates, • adjusting text generation parameters, "
"• inspecting the actual prompt that the model sees. The underlying Large Language Model is the [Meta AI](https://ai.meta.com/)'s "
"[LLaMA2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) which is hosted as [Hugging Face Inference API](https://huggingface.co/inference-api), "
"and [Text Generation Inference](https://github.com/huggingface/text-generation-inference) is the underlying serving framework. ",
elem_classes=["center"]
)
gr.Markdown(
"***NOTE:*** If you are subscribing [PRO](https://huggingface.co/pricing#pro), you can simply duplicate this space and use your "
"Hugging Face Access Token to run the same application. Just add `HF_TOKEN` secret with the Token value accorindg to [this guide](https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables)",
elem_classes=["center"]
)
with gr.Row():
with gr.Column(scale=1, min_width=180):
gr.Markdown("GradioChat", elem_id="left-top")
with gr.Column(elem_id="left-pane"):
with gr.Accordion("Histories", elem_id="chat-history-accordion", open=True):
channel_btns.append(gr.Button(channels[0], elem_classes=["custom-btn-highlight"]))
for channel in channels[1:]:
channel_btns.append(gr.Button(channel, elem_classes=["custom-btn"]))
with gr.Column(scale=8, elem_id="right-pane"):
with gr.Column(
elem_id="initial-popup", visible=False
) as example_block:
with gr.Row(scale=1):
with gr.Column(elem_id="initial-popup-left-pane"):
gr.Markdown("GradioChat", elem_id="initial-popup-title")
gr.Markdown("Making the community's best AI chat models available to everyone.")
with gr.Column(elem_id="initial-popup-right-pane"):
gr.Markdown("Chat UI is now open sourced on Hugging Face Hub")
gr.Markdown("check out the [↗ repository](https://huggingface.co/spaces/chansung/test-multi-conv)")
with gr.Column(scale=1):
gr.Markdown("Examples")
with gr.Row():
for example in examples:
ex_btns.append(gr.Button(example, elem_classes=["example-btn"]))
with gr.Column(elem_id="aux-btns-popup", visible=True):
with gr.Row():
# stop = gr.Button("Stop", elem_classes=["aux-btn"])
regenerate = gr.Button("Regen", interactive=False, elem_classes=["aux-btn"])
clean = gr.Button("Clean", elem_classes=["aux-btn"])
with gr.Accordion("Context Inspector", elem_id="aux-viewer", open=False):
context_inspector = gr.Textbox(
"",
elem_id="aux-viewer-inspector",
label="",
lines=30,
max_lines=50,
)
chatbot = gr.Chatbot(elem_id='chatbot', label="LLaMA2-70B-Chat")
instruction_txtbox = gr.Textbox(placeholder="Ask anything", label="", elem_id="prompt-txt")
with gr.Accordion("Example Templates", open=False):
template_txt = gr.Textbox(visible=False)
template_md = gr.Markdown(label="Chosen Template", visible=False, elem_classes="template-txt")
with gr.Row():
placeholder_txt1 = gr.Textbox(label="placeholder #1", visible=False, interactive=True)
placeholder_txt2 = gr.Textbox(label="placeholder #2", visible=False, interactive=True)
placeholder_txt3 = gr.Textbox(label="placeholder #3", visible=False, interactive=True)
for template in templates:
with gr.Tab(template['title']):
gr.Examples(
template['template'],
inputs=[template_txt],
outputs=[template_md, placeholder_txt1, placeholder_txt2, placeholder_txt3, instruction_txtbox],
run_on_click=True,
fn=fill_up_placeholders,
)
with gr.Accordion("Control Panel", open=False) as control_panel:
with gr.Column():
with gr.Column():
gr.Markdown("#### Global context")
with gr.Accordion("global context will persist during conversation, and it is placed at the top of the prompt", open=True):
global_context = gr.Textbox(
DEFAULT_GLOBAL_CTX,
lines=5,
max_lines=10,
interactive=True,
elem_id="global-context"
)
gr.Markdown("#### Internet search")
with gr.Row():
internet_option = gr.Radio(choices=["on", "off"], value="off", label="mode")
serper_api_key = gr.Textbox(
value= os.getenv("SERPER_API_KEY"),
placeholder="Get one by visiting serper.dev",
label="Serper api key",
visible=False
)
gr.Markdown("#### GenConfig for **response** text generation")
with gr.Row():
res_temp = gr.Slider(0.0, 2.0, 1.0, step=0.1, label="temp", interactive=True)
res_topk = gr.Slider(20, 1000, 50, step=1, label="top_k", interactive=True)
res_rpen = gr.Slider(0.0, 2.0, 1.2, step=0.1, label="rep_penalty", interactive=True)
res_mnts = gr.Slider(64, 8192, 512, step=1, label="new_tokens", interactive=True)
res_sample = gr.Radio([True, False], value=True, label="sample", interactive=True)
with gr.Column():
gr.Markdown("#### Context managements")
with gr.Row():
ctx_num_lconv = gr.Slider(2, 10, 3, step=1, label="number of recent talks to keep", interactive=True)
send_event = instruction_txtbox.submit(
lambda: [
gr.update(visible=False),
gr.update(interactive=True)
],
None,
[example_block, regenerate]
).then(
chat_stream,
[idx, local_data, instruction_txtbox, chat_state,
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv,
internet_option, serper_api_key],
[instruction_txtbox, context_inspector, chatbot, local_data, regenerate]
).then(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
# regen_event1 = regenerate.click(
# rollback_last,
# [idx, local_data, chat_state],
# [instruction_txtbox, chatbot, local_data, regenerate]
# )
# regen_event2 = regen_event1.then(
# chat_stream,
# [idx, local_data, instruction_txtbox, chat_state,
# global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv],
# [context_inspector, chatbot, local_data]
# )
# regen_event3 = regen_event2.then(
# lambda: gr.update(interactive=True),
# None,
# regenerate
# )
# regen_event4 = regen_event3.then(
# None, local_data, None,
# _js="(v)=>{ setStorage('local_data',v) }"
# )
regen_event = regenerate.click(
rollback_last,
[idx, local_data, chat_state,
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv,
internet_option, serper_api_key],
[context_inspector, chatbot, local_data, regenerate]
).then(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
# stop.click(
# lambda: gr.update(interactive=True), None, regenerate,
# cancels=[send_event, regen_event]
# )
for btn in channel_btns:
btn.click(
set_chatbot,
[btn, local_data, chat_state],
[chatbot, idx, example_block, regenerate]
).then(
None, btn, None,
_js=UPDATE_LEFT_BTNS_STATE
)
for btn in ex_btns:
btn.click(
set_example,
[btn],
[instruction_txtbox, example_block]
)
clean.click(
reset_chat,
[idx, local_data, chat_state],
[instruction_txtbox, chatbot, local_data, example_block, regenerate]
).then(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
placeholder_txt1.change(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[template_md],
show_progress=False,
_js=UPDATE_PLACEHOLDERS,
fn=None
)
placeholder_txt2.change(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[template_md],
show_progress=False,
_js=UPDATE_PLACEHOLDERS,
fn=None
)
placeholder_txt3.change(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[template_md],
show_progress=False,
_js=UPDATE_PLACEHOLDERS,
fn=None
)
placeholder_txt1.submit(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[instruction_txtbox, placeholder_txt1, placeholder_txt2, placeholder_txt3],
fn=get_final_template
)
placeholder_txt2.submit(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[instruction_txtbox, placeholder_txt1, placeholder_txt2, placeholder_txt3],
fn=get_final_template
)
placeholder_txt3.submit(
inputs=[template_txt, placeholder_txt1, placeholder_txt2, placeholder_txt3],
outputs=[instruction_txtbox, placeholder_txt1, placeholder_txt2, placeholder_txt3],
fn=get_final_template
)
demo.load(
None,
inputs=None,
outputs=[chatbot, local_data],
_js=GET_LOCAL_STORAGE,
)
demo.queue(concurrency_count=5, max_size=256).launch() |