Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from threading import Thread
|
|
6 |
# Load model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
8 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
9 |
-
model = model.to('cuda:0')
|
10 |
|
11 |
class StopOnTokens(StoppingCriteria):
|
12 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
@@ -24,7 +23,7 @@ def predict(message, history):
|
|
24 |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
|
25 |
for item in history_transformer_format])
|
26 |
|
27 |
-
model_inputs = tokenizer([messages], return_tensors="pt")
|
28 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
|
29 |
max_new_tokens = gr.Slider(minimum=0, maximum=2048, value=10, label="Temperature"),
|
30 |
min_new_tokens = gr.Slider(minimum=0, maximum=2048, value=1, label="Temperature"),
|
@@ -39,14 +38,10 @@ def predict(message, history):
|
|
39 |
num_beams=1,
|
40 |
stopping_criteria=StoppingCriteriaList([stop])
|
41 |
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
for new_token in streamer:
|
47 |
-
if new_token != '<':
|
48 |
-
partial_message += new_token
|
49 |
-
yield partial_message
|
50 |
|
51 |
|
52 |
gr.ChatInterface(predict).queue().launch()
|
|
|
6 |
# Load model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
8 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
|
|
9 |
|
10 |
class StopOnTokens(StoppingCriteria):
|
11 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
|
|
23 |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
|
24 |
for item in history_transformer_format])
|
25 |
|
26 |
+
model_inputs = tokenizer([messages], return_tensors="pt")
|
27 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
|
28 |
max_new_tokens = gr.Slider(minimum=0, maximum=2048, value=10, label="Temperature"),
|
29 |
min_new_tokens = gr.Slider(minimum=0, maximum=2048, value=1, label="Temperature"),
|
|
|
38 |
num_beams=1,
|
39 |
stopping_criteria=StoppingCriteriaList([stop])
|
40 |
)
|
41 |
+
generated_sequence = model.generate(**generate_kwargs)[0]
|
42 |
+
generated_text = tokenizer.decode(generated_sequence, skip_special_tokens=True)
|
43 |
+
|
44 |
+
yield generated_text
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
gr.ChatInterface(predict).queue().launch()
|