File size: 3,155 Bytes
0e04e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import os
from typing import Optional
from transformers import Trainer

import torch
from transformers.modeling_utils import PreTrainedModel, unwrap_model
from transformers.utils import logging

logger = logging.get_logger(__name__)

WEIGHTS_NAME = "pytorch_model.bin"
TRAINING_ARGS_NAME = "training_args.bin"


class PrefixTrainer(Trainer):
    def __init__(self, *args, save_changed=False, **kwargs):
        self.save_changed = save_changed
        super().__init__(*args, **kwargs)

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
                if state_dict is None:
                    state_dict = self.model.state_dict()
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
        else:
            if self.save_changed:
                print("Saving PrefixEncoder")
                state_dict = self.model.state_dict()
                filtered_state_dict = {}
                for k, v in self.model.named_parameters():
                    if v.requires_grad:
                        filtered_state_dict[k] = state_dict[k]
                self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
            else:
                print("Saving the whole model")
                self.model.save_pretrained(output_dir, state_dict=state_dict)
        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))