Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.utils.data import Dataset | |
from transformers.deepspeed import is_deepspeed_zero3_enabled | |
from trainer import PrefixTrainer | |
from transformers.trainer_utils import PredictionOutput | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Seq2SeqTrainer(PrefixTrainer): | |
def evaluate( | |
self, | |
eval_dataset: Optional[Dataset] = None, | |
ignore_keys: Optional[List[str]] = None, | |
metric_key_prefix: str = "eval", | |
**gen_kwargs | |
) -> Dict[str, float]: | |
""" | |
Run evaluation and returns metrics. | |
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent | |
(pass it to the init `compute_metrics` argument). | |
You can also subclass and override this method to inject custom behavior. | |
Args: | |
eval_dataset (`Dataset`, *optional*): | |
Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns | |
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__` | |
method. | |
ignore_keys (`List[str]`, *optional*): | |
A list of keys in the output of your model (if it is a dictionary) that should be ignored when | |
gathering predictions. | |
metric_key_prefix (`str`, *optional*, defaults to `"eval"`): | |
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named | |
"eval_bleu" if the prefix is `"eval"` (default) | |
max_length (`int`, *optional*): | |
The maximum target length to use when predicting with the generate method. | |
num_beams (`int`, *optional*): | |
Number of beams for beam search that will be used when predicting with the generate method. 1 means no | |
beam search. | |
gen_kwargs: | |
Additional `generate` specific kwargs. | |
Returns: | |
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The | |
dictionary also contains the epoch number which comes from the training state. | |
""" | |
gen_kwargs = gen_kwargs.copy() | |
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None: | |
gen_kwargs["max_length"] = self.args.generation_max_length | |
gen_kwargs["num_beams"] = ( | |
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams | |
) | |
self._gen_kwargs = gen_kwargs | |
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) | |
def predict( | |
self, | |
test_dataset: Dataset, | |
ignore_keys: Optional[List[str]] = None, | |
metric_key_prefix: str = "test", | |
**gen_kwargs | |
) -> PredictionOutput: | |
""" | |
Run prediction and returns predictions and potential metrics. | |
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method | |
will also return metrics, like in `evaluate()`. | |
Args: | |
test_dataset (`Dataset`): | |
Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the | |
`model.forward()` method are automatically removed. Has to implement the method `__len__` | |
ignore_keys (`List[str]`, *optional*): | |
A list of keys in the output of your model (if it is a dictionary) that should be ignored when | |
gathering predictions. | |
metric_key_prefix (`str`, *optional*, defaults to `"eval"`): | |
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named | |
"eval_bleu" if the prefix is `"eval"` (default) | |
max_length (`int`, *optional*): | |
The maximum target length to use when predicting with the generate method. | |
num_beams (`int`, *optional*): | |
Number of beams for beam search that will be used when predicting with the generate method. 1 means no | |
beam search. | |
gen_kwargs: | |
Additional `generate` specific kwargs. | |
<Tip> | |
If your predictions or labels have different sequence lengths (for instance because you're doing dynamic | |
padding in a token classification task) the predictions will be padded (on the right) to allow for | |
concatenation into one array. The padding index is -100. | |
</Tip> | |
Returns: *NamedTuple* A namedtuple with the following keys: | |
- predictions (`np.ndarray`): The predictions on `test_dataset`. | |
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some). | |
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained | |
labels). | |
""" | |
gen_kwargs = gen_kwargs.copy() | |
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None: | |
gen_kwargs["max_length"] = self.args.generation_max_length | |
gen_kwargs["num_beams"] = ( | |
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams | |
) | |
self._gen_kwargs = gen_kwargs | |
return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) | |
def prediction_step( | |
self, | |
model: nn.Module, | |
inputs: Dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[List[str]] = None, | |
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: | |
""" | |
Perform an evaluation step on `model` using `inputs`. | |
Subclass and override to inject custom behavior. | |
Args: | |
model (`nn.Module`): | |
The model to evaluate. | |
inputs (`Dict[str, Union[torch.Tensor, Any]]`): | |
The inputs and targets of the model. | |
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
argument `labels`. Check your model's documentation for all accepted arguments. | |
prediction_loss_only (`bool`): | |
Whether or not to return the loss only. | |
Return: | |
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and | |
labels (each being optional). | |
""" | |
if not self.args.predict_with_generate or prediction_loss_only: | |
return super().prediction_step( | |
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys | |
) | |
has_labels = "labels" in inputs | |
inputs = self._prepare_inputs(inputs) | |
# XXX: adapt synced_gpus for fairscale as well | |
gen_kwargs = self._gen_kwargs.copy() | |
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None: | |
gen_kwargs["max_length"] = self.model.config.max_length | |
gen_kwargs["num_beams"] = ( | |
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams | |
) | |
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False | |
gen_kwargs["synced_gpus"] = ( | |
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus | |
) | |
if "attention_mask" in inputs: | |
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None) | |
if "position_ids" in inputs: | |
gen_kwargs["position_ids"] = inputs.get("position_ids", None) | |
if "global_attention_mask" in inputs: | |
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None) | |
# prepare generation inputs | |
# some encoder-decoder models can have varying encoder's and thus | |
# varying model input names | |
if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name: | |
generation_inputs = inputs[self.model.encoder.main_input_name] | |
else: | |
generation_inputs = inputs[self.model.main_input_name] | |
gen_kwargs["input_ids"] = generation_inputs | |
generated_tokens = self.model.generate(**gen_kwargs) | |
generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:] | |
# in case the batch is shorter than max length, the output should be padded | |
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]: | |
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) | |
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < ( | |
gen_kwargs["max_new_tokens"] + 1 | |
): | |
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1) | |
loss = None | |
if self.args.prediction_loss_only: | |
return (loss, None, None) | |
if has_labels: | |
labels = inputs["labels"] | |
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]: | |
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) | |
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < ( | |
gen_kwargs["max_new_tokens"] + 1 | |
): | |
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1)) | |
else: | |
labels = None | |
return (loss, generated_tokens, labels) | |
def _pad_tensors_to_max_len(self, tensor, max_length): | |
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): | |
# If PAD token is not defined at least EOS token has to be defined | |
pad_token_id = ( | |
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id | |
) | |
else: | |
if self.model.config.pad_token_id is not None: | |
pad_token_id = self.model.config.pad_token_id | |
else: | |
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") | |
padded_tensor = pad_token_id * torch.ones( | |
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device | |
) | |
padded_tensor[:, : tensor.shape[-1]] = tensor | |
return padded_tensor | |