File size: 12,229 Bytes
ddaab9d
 
69420c9
ddaab9d
 
69420c9
 
ddaab9d
 
 
 
 
69420c9
 
 
ddaab9d
 
 
 
 
 
 
69420c9
 
 
 
 
 
 
ddaab9d
 
69420c9
 
 
 
ddaab9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69420c9
 
 
 
 
 
 
ddaab9d
69420c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddaab9d
 
c9b7234
ddaab9d
ee42a6b
ddaab9d
 
 
 
ee42a6b
 
ddaab9d
 
 
ee42a6b
ddaab9d
 
 
ee42a6b
 
ddaab9d
 
 
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
ee42a6b
 
ddaab9d
69420c9
ddaab9d
 
 
 
 
ee42a6b
ddaab9d
 
 
 
ee42a6b
69420c9
ddaab9d
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
ee42a6b
 
ddaab9d
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
 
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
ee42a6b
ddaab9d
 
 
 
 
 
 
 
 
 
 
 
 
69420c9
ee42a6b
69420c9
 
 
 
 
 
 
ee42a6b
ddaab9d
 
ee42a6b
ddaab9d
 
ee42a6b
ddaab9d
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
ee42a6b
ddaab9d
69420c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddaab9d
 
 
 
 
69420c9
ddaab9d
 
 
 
 
 
 
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
69420c9
 
 
 
 
 
ddaab9d
 
ee42a6b
 
ddaab9d
ee42a6b
 
 
ddaab9d
ee42a6b
 
 
 
 
 
 
ddaab9d
ee42a6b
 
 
 
 
 
ddaab9d
ee42a6b
ddaab9d
ee42a6b
 
 
 
 
 
 
 
 
 
69420c9
 
 
 
 
 
 
 
 
 
 
 
 
 
ee42a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
ddaab9d
ee42a6b
 
ddaab9d
 
 
 
 
 
 
 
 
 
 
ee42a6b
ddaab9d
 
 
 
 
 
 
 
 
 
 
ee42a6b
 
ddaab9d
ee42a6b
 
ddaab9d
 
 
ee42a6b
 
 
ddaab9d
 
 
 
 
 
 
 
ee42a6b
 
 
 
 
 
ddaab9d
 
 
 
 
 
ee42a6b
 
 
ddaab9d
 
 
 
50728a6
 
69420c9
 
50728a6
ee42a6b
 
 
 
 
69420c9
ddaab9d
ee42a6b
 
 
 
 
69420c9
ddaab9d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM).

import torch
import gradio as gr
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.onnx import SamPredictorONNX
from PIL import ImageDraw
from utils.tools_gradio import fast_process
import copy
import argparse

# Use ONNX to speed up the inference.
ENABLE_ONNX = True

parser = argparse.ArgumentParser(
    description="Host EdgeSAM as a local web service."
)
parser.add_argument(
    "--checkpoint",
    default="weights/edge_sam_3x.pth",
    type=str,
    help="The path to the PyTorch checkpoint of EdgeSAM."
)
parser.add_argument(
    "--encoder-onnx-path",
    default="weights/edge_sam_3x_encoder.onnx",
    type=str,
    help="The path to the ONNX model of EdgeSAM's encoder."
)
parser.add_argument(
    "--decoder-onnx-path",
    default="weights/edge_sam_3x_decoder.onnx",
    type=str,
    help="The path to the ONNX model of EdgeSAM's decoder."
)
parser.add_argument(
    "--server-name",
    default="0.0.0.0",
    type=str,
    help="The server address that this demo will be hosted on."
)
parser.add_argument(
    "--port",
    default=8080,
    type=int,
    help="The port that this demo will be hosted on."
)
args = parser.parse_args()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if ENABLE_ONNX:
    predictor = SamPredictorONNX(args.encoder_onnx_path, args.decoder_onnx_path)
else:
    sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic")
    sam = sam.to(device=device)
    sam.eval()
    predictor = SamPredictor(sam)

examples = [
    ["assets/1.jpeg"],
    ["assets/2.jpeg"],
    ["assets/3.jpeg"],
    ["assets/4.jpeg"],
    ["assets/5.jpeg"],
    ["assets/6.jpeg"],
    ["assets/7.jpeg"],
    ["assets/8.jpeg"],
    ["assets/9.jpeg"],
    ["assets/10.jpeg"],
    ["assets/11.jpeg"],
    ["assets/12.jpeg"],
    ["assets/13.jpeg"],
    ["assets/14.jpeg"],
    ["assets/15.jpeg"],
    ["assets/16.jpeg"]
]

# Description
title = "<center><strong><font size='8'>EdgeSAM<font></strong> <a href='https://github.com/chongzhou96/EdgeSAM'><font size='6'>[GitHub]</font></a> </center>"

description_p = """ # Instructions for point mode

                1. Upload an image or click one of the provided examples.
                2. Select the point type.
                3. Click once or multiple times on the image to indicate the object of interest.
                4. The Clear button clears all the points.
                5. The Reset button resets both points and the image.

              """

description_b = """ # Instructions for box mode

                1. Upload an image or click one of the provided examples.
                2. Click twice on the image (diagonal points of the box).
                3. The Clear button clears the box.
                4. The Reset button resets both the box and the image.

              """

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"

global_points = []
global_point_label = []
global_box = []
global_image = None
global_image_with_prompt = None


def reset():
    global global_points
    global global_point_label
    global global_box
    global global_image
    global global_image_with_prompt
    global_points = []
    global_point_label = []
    global_box = []
    global_image = None
    global_image_with_prompt = None
    return None


def reset_all():
    global global_points
    global global_point_label
    global global_box
    global global_image
    global global_image_with_prompt
    global_points = []
    global_point_label = []
    global_box = []
    global_image = None
    global_image_with_prompt = None
    return None, None


def clear():
    global global_points
    global global_point_label
    global global_box
    global global_image
    global global_image_with_prompt
    global_points = []
    global_point_label = []
    global_box = []
    global_image_with_prompt = copy.deepcopy(global_image)
    return global_image


def on_image_upload(image, input_size=1024):
    global global_points
    global global_point_label
    global global_box
    global global_image
    global global_image_with_prompt
    global_points = []
    global_point_label = []
    global_box = []

    input_size = int(input_size)
    w, h = image.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    image = image.resize((new_w, new_h))
    global_image = copy.deepcopy(image)
    global_image_with_prompt = copy.deepcopy(image)
    print("Image changed")
    nd_image = np.array(global_image)
    predictor.set_image(nd_image)

    return image


def convert_box(xyxy):
    min_x = min(xyxy[0][0], xyxy[1][0])
    max_x = max(xyxy[0][0], xyxy[1][0])
    min_y = min(xyxy[0][1], xyxy[1][1])
    max_y = max(xyxy[0][1], xyxy[1][1])
    xyxy[0][0] = min_x
    xyxy[1][0] = max_x
    xyxy[0][1] = min_y
    xyxy[1][1] = max_y
    return xyxy


def segment_with_points(
        label,
        evt: gr.SelectData,
        input_size=1024,
        better_quality=False,
        withContours=True,
        use_retina=True,
        mask_random_color=False,
):
    global global_points
    global global_point_label
    global global_image_with_prompt

    x, y = evt.index[0], evt.index[1]
    point_radius, point_color = 5, (97, 217, 54) if label == "Positive" else (237, 34, 13)
    global_points.append([x, y])
    global_point_label.append(1 if label == "Positive" else 0)

    print(f'global_points: {global_points}')
    print(f'global_point_label: {global_point_label}')

    draw = ImageDraw.Draw(global_image_with_prompt)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )
    image = global_image_with_prompt

    if ENABLE_ONNX:
        global_points_np = np.array(global_points)[None]
        global_point_label_np = np.array(global_point_label)[None]
        masks, scores, _ = predictor.predict(
            point_coords=global_points_np,
            point_labels=global_point_label_np,
        )
        masks = masks.squeeze(0)
        scores = scores.squeeze(0)
    else:
        global_points_np = np.array(global_points)
        global_point_label_np = np.array(global_point_label)
        masks, scores, logits = predictor.predict(
            point_coords=global_points_np,
            point_labels=global_point_label_np,
            num_multimask_outputs=4,
            use_stability_score=True
        )

    print(f'scores: {scores}')
    area = masks.sum(axis=(1, 2))
    print(f'area: {area}')

    annotations = np.expand_dims(masks[scores.argmax()], axis=0)

    seg = fast_process(
        annotations=annotations,
        image=image,
        device=device,
        scale=(1024 // input_size),
        better_quality=better_quality,
        mask_random_color=mask_random_color,
        bbox=None,
        use_retina=use_retina,
        withContours=withContours,
    )

    return seg


def segment_with_box(
        evt: gr.SelectData,
        input_size=1024,
        better_quality=False,
        withContours=True,
        use_retina=True,
        mask_random_color=False,
):
    global global_box
    global global_image
    global global_image_with_prompt

    x, y = evt.index[0], evt.index[1]
    point_radius, point_color, box_outline = 5, (97, 217, 54), 5
    box_color = (0, 255, 0)

    if len(global_box) == 0:
        global_box.append([x, y])
    elif len(global_box) == 1:
        global_box.append([x, y])
    elif len(global_box) == 2:
        global_image_with_prompt = copy.deepcopy(global_image)
        global_box = [[x, y]]

    print(f'global_box: {global_box}')

    draw = ImageDraw.Draw(global_image_with_prompt)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )
    image = global_image_with_prompt

    if len(global_box) == 2:
        global_box = convert_box(global_box)
        xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1])
        draw.rectangle(
            xy,
            outline=box_color,
            width=box_outline
        )

        global_box_np = np.array(global_box)
        if ENABLE_ONNX:
            point_coords = global_box_np.reshape(2, 2)[None]
            point_labels = np.array([2, 3])[None]
            masks, _, _ = predictor.predict(
                point_coords=point_coords,
                point_labels=point_labels,
            )
            annotations = masks[:, 0, :, :]
        else:
            masks, scores, _ = predictor.predict(
                box=global_box_np,
                num_multimask_outputs=1,
            )
            annotations = masks

        seg = fast_process(
            annotations=annotations,
            image=image,
            device=device,
            scale=(1024 // input_size),
            better_quality=better_quality,
            mask_random_color=mask_random_color,
            bbox=None,
            use_retina=use_retina,
            withContours=withContours,
        )
        return seg
    return image

img_p = gr.Image(label="Input with points", type="pil")
img_b = gr.Image(label="Input with box", type="pil")

with gr.Blocks(css=css, title="EdgeSAM") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            # Title
            gr.Markdown(title)

    with gr.Tab("Point mode") as tab_p:
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                img_p.render()
            with gr.Column(scale=1):
                with gr.Row():
                    add_or_remove = gr.Radio(
                        ["Positive", "Negative"],
                        value="Positive",
                        label="Point Type"
                    )

                    with gr.Column():
                        clear_btn_p = gr.Button("Clear", variant="secondary")
                        reset_btn_p = gr.Button("Reset", variant="secondary")
                with gr.Row():
                    gr.Markdown(description_p)

        with gr.Row():
            with gr.Column():
                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[img_p],
                    outputs=[img_p],
                    examples_per_page=8,
                    fn=on_image_upload,
                    run_on_click=True
                )

    with gr.Tab("Box mode") as tab_b:
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                img_b.render()
            with gr.Row():
                with gr.Column():
                    clear_btn_b = gr.Button("Clear", variant="secondary")
                    reset_btn_b = gr.Button("Reset", variant="secondary")
                    gr.Markdown(description_b)

        with gr.Row():
            with gr.Column():
                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[img_b],
                    outputs=[img_b],
                    examples_per_page=8,
                    fn=on_image_upload,
                    run_on_click=True
                )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
                "<center><img src='https://visitor-badge.laobi.icu/badge?page_id=chongzhou/edgesam' alt='visitors'></center>")

    img_p.upload(on_image_upload, img_p, [img_p])
    img_p.select(segment_with_points, [add_or_remove], img_p)

    clear_btn_p.click(clear, outputs=[img_p])
    reset_btn_p.click(reset, outputs=[img_p])
    tab_p.select(fn=reset_all, outputs=[img_p, img_b])

    img_b.upload(on_image_upload, img_b, [img_b])
    img_b.select(segment_with_box, outputs=[img_b])

    clear_btn_b.click(clear, outputs=[img_b])
    reset_btn_b.click(reset, outputs=[img_b])
    tab_b.select(fn=reset_all, outputs=[img_p, img_b])

demo.queue()
# demo.launch(server_name=args.server_name, server_port=args.port)
demo.launch()