Spaces:
Runtime error
Runtime error
File size: 14,818 Bytes
ddaab9d de2df78 ddaab9d de2df78 ddaab9d de2df78 ddaab9d de2df78 ddaab9d 1c1d216 ddaab9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM).
import gradio as gr
import numpy as np
import torch
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from PIL import ImageDraw
from utils.tools_gradio import fast_process
import copy
import argparse
parser = argparse.ArgumentParser(
description="Host EdgeSAM as a local web service."
)
parser.add_argument(
"--checkpoint",
default="weights/edge_sam_3x.pth",
type=str,
help="The path to the EdgeSAM model checkpoint."
)
parser.add_argument(
"--enable-everything-mode",
action="store_true",
help="Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the "
"decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected.",
)
parser.add_argument(
"--server-name",
default="0.0.0.0",
type=str,
help="The server address that this demo will be hosted on."
)
parser.add_argument(
"--port",
default=8080,
type=int,
help="The port that this demo will be hosted on."
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic")
sam = sam.to(device=device)
sam.eval()
mask_generator = SamAutomaticMaskGenerator(sam)
predictor = SamPredictor(sam)
# Description
title = "<center><strong><font size='8'>EdgeSAM<font></strong></center>"
description_p = """ # Instructions for point mode [Instructional video](https://huggingface.co/spaces/chongzhou/EdgeSAM/blob/main/assets/point-instructions.mov)
1. Upload an image or click one of the provided examples.
2. Select the point type.
3. Click once or multiple times on the image to indicate the object of interest.
4. Click Start to get the segmentation mask.
5. The Clear button clears all the points.
6. The Reset button resets both points and the image.
"""
description_b = """ # Instructions for box mode [Instructional video](https://huggingface.co/spaces/chongzhou/EdgeSAM/blob/main/assets/box-instructions.mov)
1. Upload an image or click one of the provided examples.
2. Click twice on the image (diagonal points of the box).
3. Click Start to get the segmentation mask.
4. The Clear button clears the box.
5. The Reset button resets both the box and the image.
"""
description_e = """ # Everything mode is NOT recommended.
Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected.
"""
examples = [
["assets/picture1.jpg"],
["assets/picture2.jpg"],
["assets/picture3.jpg"],
["assets/picture4.jpg"],
]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
global_points = []
global_point_label = []
global_box = []
global_image = None
def reset():
global global_points
global global_point_label
global global_box
global global_image
global_points = []
global_point_label = []
global_box = []
global_image = None
return None, None
def reset_all():
global global_points
global global_point_label
global global_box
global global_image
global_points = []
global_point_label = []
global_box = []
global_image = None
if args.enable_everything_mode:
return None, None, None, None, None, None
else:
return None, None, None, None
def clear():
global global_points
global global_point_label
global global_box
global global_image
global_points = []
global_point_label = []
global_box = []
return global_image, None
def on_image_upload(image, input_size=1024):
global global_points
global global_point_label
global global_box
global global_image
global_points = []
global_point_label = []
global_box = []
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
global_image = copy.deepcopy(image)
print("Image changed")
nd_image = np.array(global_image)
predictor.set_image(nd_image)
return image, None
def convert_box(xyxy):
min_x = min(xyxy[0][0], xyxy[1][0])
max_x = max(xyxy[0][0], xyxy[1][0])
min_y = min(xyxy[0][1], xyxy[1][1])
max_y = max(xyxy[0][1], xyxy[1][1])
xyxy[0][0] = min_x
xyxy[1][0] = max_x
xyxy[0][1] = min_y
xyxy[1][1] = max_y
return xyxy
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
# global global_image
x, y = evt.index[0], evt.index[1]
# x = int(x * scale)
# y = int(y * scale)
point_radius, point_color = 10, (97, 217, 54) if label == "Positive" else (237, 34, 13)
global_points.append([x, y])
global_point_label.append(1 if label == "Positive" else 0)
print(f'global_points: {global_points}')
print(f'global_point_label: {global_point_label}')
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return image
def get_box_with_draw(image, evt: gr.SelectData):
global global_box
# global global_image
x, y = evt.index[0], evt.index[1]
# x = float(x * scale)
# y = float(y * scale)
point_radius, point_color, box_outline = 5, (97, 217, 54), 5
box_color = (0, 255, 0)
if len(global_box) == 0:
global_box.append([x, y])
elif len(global_box) == 1:
global_box.append([x, y])
elif len(global_box) == 2:
global_box = [[x, y]]
print(f'global_box: {global_box}')
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
if len(global_box) == 2:
global_box = convert_box(global_box)
xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1])
draw.rectangle(
xy,
outline=box_color,
width=box_outline
)
return image
def segment_with_points(
image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
global global_points
global global_point_label
global_points_np = np.array(global_points)
global_point_label_np = np.array(global_point_label)
if global_points_np.size == 0 and global_point_label_np.size == 0:
print("No point selected")
return image, image
num_multimask_outputs = 4
masks, scores, logits = predictor.predict(
point_coords=global_points_np,
point_labels=global_point_label_np,
num_multimask_outputs=num_multimask_outputs,
use_stability_score=True
)
print(f'scores: {scores}')
area = masks.sum(axis=(1, 2))
print(f'area: {area}')
if num_multimask_outputs == 1:
annotations = masks
else:
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
return image, seg
def segment_with_box(
image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
global global_box
global_box_np = np.array(global_box)
if global_box_np.size < 4:
print("No box selected")
return image, image
masks, scores, logits = predictor.predict(
box=global_box_np,
num_multimask_outputs=1,
)
annotations = masks
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
return image, seg
def segment_everything(
image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
nd_image = np.array(image)
masks = mask_generator.generate(nd_image)
annotations = masks
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
return seg
cond_img_p = gr.Image(label="Input with points", type="pil")
cond_img_b = gr.Image(label="Input with box", type="pil")
cond_img_e = gr.Image(label="Input (everything)", type="pil")
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil")
segm_img_b = gr.Image(label="Segmented Image with box", interactive=False, type="pil")
segm_img_e = gr.Image(label="Segmented Everything", interactive=False, type="pil")
if args.enable_everything_mode:
all_outputs = [cond_img_p, cond_img_b, cond_img_e, segm_img_p, segm_img_b, segm_img_e]
else:
all_outputs = [cond_img_p, cond_img_b, segm_img_p, segm_img_b]
with gr.Blocks(css=css, title="EdgeSAM") as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode") as tab_p:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(
["Positive", "Negative"],
value="Positive",
label="Point Type"
)
with gr.Column():
segment_btn_p = gr.Button(
"Start", variant="primary"
)
clear_btn_p = gr.Button("Clear", variant="secondary")
reset_btn_p = gr.Button("Reset", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
outputs=[cond_img_p, segm_img_p],
examples_per_page=4,
fn=on_image_upload,
run_on_click=True
)
with gr.Column():
# Description
gr.Markdown(description_p)
with gr.Tab("Box mode") as tab_b:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
segment_btn_b = gr.Button(
"Start", variant="primary"
)
clear_btn_b = gr.Button("Clear", variant="secondary")
reset_btn_b = gr.Button("Reset", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_b],
outputs=[cond_img_b, segm_img_b],
examples_per_page=4,
fn=on_image_upload,
run_on_click=True
)
with gr.Column():
# Description
gr.Markdown(description_b)
if args.enable_everything_mode:
with gr.Tab("Everything mode") as tab_e:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_e.render()
with gr.Column(scale=1):
segm_img_e.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
segment_btn_e = gr.Button(
"Start", variant="primary"
)
reset_btn_e = gr.Button("Reset", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_e],
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_e)
cond_img_p.upload(on_image_upload, cond_img_p, [cond_img_p, segm_img_p])
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_p.click(
segment_with_points, inputs=[cond_img_p], outputs=[cond_img_p, segm_img_p]
)
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
reset_btn_p.click(reset, outputs=[cond_img_p, segm_img_p])
tab_p.select(fn=reset_all, outputs=all_outputs)
cond_img_b.select(get_box_with_draw, [cond_img_b], cond_img_b)
segment_btn_b.click(
segment_with_box, inputs=[cond_img_b], outputs=[cond_img_b, segm_img_b]
)
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b])
reset_btn_b.click(reset, outputs=[cond_img_b, segm_img_b])
tab_b.select(fn=reset_all, outputs=all_outputs)
if args.enable_everything_mode:
segment_btn_e.click(
segment_everything, inputs=[cond_img_e], outputs=segm_img_e
)
reset_btn_e.click(reset, outputs=[cond_img_e, segm_img_e])
tab_e.select(fn=reset_all, outputs=all_outputs)
demo.queue()
# demo.launch(server_name=args.server_name, server_port=args.port)
demo.launch() |