AI_Tutor / app.py
chsubhasis's picture
key addressed
7b8ddf1
raw
history blame
7.94 kB
import os
from getpass import getpass
import csv
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
#from langchain.schema import Document
from langchain_huggingface import HuggingFaceEmbeddings
import torch
from langchain_huggingface import HuggingFaceEndpoint
from langchain_community.cache import InMemoryCache
from langchain.globals import set_llm_cache
from langchain_chroma import Chroma
from langchain.chains import RetrievalQA
import numpy as np
import gradio
import sqlite3
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
#hfapi_key = getpass("Enter you HuggingFace access token:")
hfapi_key = os.getenv("Mytoken")
print(hfapi_key)
if not hfapi_key:
raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
os.environ["HF_TOKEN"] = hfapi_key
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hfapi_key
set_llm_cache(InMemoryCache())
persist_directory = 'docs/chroma/'
####################################
def load_file_as_JSON():
print("$$$$$ ENTER INTO load_file_as_JSON $$$$$")
rows = []
with open("mini-llama-articles.csv", mode="r", encoding="utf-8") as file:
csv_reader = csv.reader(file)
for idx, row in enumerate(csv_reader):
if idx == 0:
continue
# Skip header row
rows.append(row)
print("@@@@@@ EXIT FROM load_file_as_JSON @@@@@")
return rows
####################################
def get_documents():
print("$$$$$ ENTER INTO get_documents $$$$$")
documents = [
Document(
page_content=row[1], metadata={"title": row[0], "url": row[2], "source_name": row[3]}
)
for row in load_file_as_JSON()
]
print("documents lenght is ", len(documents))
print("first entry from documents ", documents[0])
print("document metadata ", documents[0].metadata)
print("@@@@@@ EXIT FROM get_documents @@@@@")
return documents
####################################
def getDocSplitter():
print("$$$$$ ENTER INTO getDocSplitter $$$$$")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 512,
chunk_overlap = 128
)
splits = text_splitter.split_documents(get_documents())
print("Split length ", len(splits))
print("Page content ", splits[0].page_content)
print("@@@@@@ EXIT FROM getDocSplitter @@@@@")
return splits
####################################
def getEmbeddings():
print("$$$$$ ENTER INTO getEmbeddings $$$$$")
modelPath="mixedbread-ai/mxbai-embed-large-v1"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create a dictionary with model configuration options, specifying to use the CPU for computations
model_kwargs = {'device': device} # cuda/cpu
# Create a dictionary with encoding options, specifically setting 'normalize_embeddings' to False
encode_kwargs = {'normalize_embeddings': False}
embedding = HuggingFaceEmbeddings(
model_name=modelPath, # Provide the pre-trained model's path
model_kwargs=model_kwargs, # Pass the model configuration options
encode_kwargs=encode_kwargs # Pass the encoding options
)
print("Embedding ", embedding)
print("@@@@@@ EXIT FROM getEmbeddings @@@@@")
return embedding
####################################
def getLLM():
print("$$$$$ ENTER INTO getLLM $$$$$")
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
#repo_id="chsubhasis/ai-tutor-towardsai",
task="text-generation",
max_new_tokens = 512,
top_k = 10,
temperature = 0.1,
repetition_penalty = 1.03,
)
print("llm ", llm)
print("Who is the CEO of Apple? ", llm.invoke("Who is the CEO of Apple?")) #test
print("@@@@@@ EXIT FROM getLLM @@@@@")
return llm
####################################
def is_chroma_db_present(directory: str):
"""
Check if the directory exists and contains any files.
"""
return os.path.exists(directory) and len(os.listdir(directory)) > 0
####################################
def getRetiriver():
print("$$$$$ ENTER INTO getRetiriver $$$$$")
if is_chroma_db_present(persist_directory):
print(f"Chroma vector DB found in '{persist_directory}' and will be loaded.")
# Load vector store from the local directory
#vectordb = Chroma(persist_directory=persist_directory)
vectordb = Chroma(
persist_directory=persist_directory,
embedding_function=getEmbeddings(),
collection_name="ai_tutor")
else:
vectordb = Chroma.from_documents(
collection_name="ai_tutor",
documents=getDocSplitter(), # splits we created earlier
embedding=getEmbeddings(),
persist_directory=persist_directory, # save the directory
)
print("vectordb collection count ", vectordb._collection.count())
docs = vectordb.search("What is Artificial Intelligence", search_type="mmr", k=5)
for i in range(len(docs)):
print(docs[i].page_content)
metadata_filter = {
"result": "llama" # ChromaDB will perform a substring search
}
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 3, "fetch_k":5, "filter": metadata_filter})
print("retriever ", retriever)
print("@@@@@@ EXIT FROM getRetiriver @@@@@")
return retriever
####################################
def get_rag_response(query):
print("$$$$$ ENTER INTO get_rag_response $$$$$")
qa_chain = RetrievalQA.from_chain_type(
llm=getLLM(),
chain_type="stuff",
retriever=getRetiriver(),
return_source_documents=True
)
#RAG Evaluation
# Sample dataset of questions and expected answers
dataset = [
{"question": "Who is the CEO of Meta?", "expected_answer": "Mark Zuckerberg"},
{"question": "Who is the CEO of Apple?", "expected_answer": "Tiiiiiim Coooooook"},
]
hit_rate, mrr = evaluate_rag(qa_chain, dataset)
print(f"Hit Rate: {hit_rate:.2f}, Mean Reciprocal Rank (MRR): {mrr:.2f}")
result = qa_chain({"query": query})
print("Result ",result)
print("@@@@@@ EXIT FROM get_rag_response @@@@@")
return result["result"]
####################################
def evaluate_rag(qa, dataset):
print("$$$$$ ENTER INTO evaluate_rag $$$$$")
hits = 0
reciprocal_ranks = []
for entry in dataset:
question = entry["question"]
expected_answer = entry["expected_answer"]
# Get the answer from the RAG system
response = qa({"query": question})
answer = response["result"]
# Check if the answer matches the expected answer
if expected_answer.lower() in answer.lower():
hits += 1
reciprocal_ranks.append(1) # Hit at rank 1
else:
reciprocal_ranks.append(0)
# Calculate Hit Rate and MRR
hit_rate = hits / len(dataset)
mrr = np.mean(reciprocal_ranks)
print("@@@@@@ EXIT FROM evaluate_rag @@@@@")
return hit_rate, mrr
####################################
def launch_ui():
print("$$$$$ ENTER INTO launch_ui $$$$$")
# Input from user
in_question = gradio.Textbox(lines=10, placeholder=None, value="query", label='Enter your query')
# Output prediction
out_response = gradio.Textbox(type="text", label='RAG Response')
# Gradio interface to generate UI
iface = gradio.Interface(fn = get_rag_response,
inputs = [in_question],
outputs = [out_response],
title = "RAG Response",
description = "Write the query and get the response from the RAG system",
allow_flagging = 'never')
iface.launch(share = True)
####################################
if __name__ == "__main__":
launch_ui()