chsubhasis commited on
Commit
d38220b
·
1 Parent(s): 63ba1e0

app and requirements files added

Browse files
Files changed (2) hide show
  1. app.py +57 -4
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,7 +1,60 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelWithLMHead, AutoTokenizer
3
+ import torch
4
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel, DataCollatorForLanguageModeling
5
 
6
+ #def greet(name):
7
+ # return "Hello " + name + "!!"
8
+ username = "chsubhasis"
9
+ my_repo = "Medical-QnA-gpt2"
10
+ my_checkpoint = username + '/' + my_repo
11
+ loaded_model = AutoModelWithLMHead.from_pretrained(my_checkpoint)
12
+ loaded_tokenizer = AutoTokenizer.from_pretrained(my_checkpoint)
13
 
14
+
15
+ def generate_response(model, tokenizer, prompt, max_length=200):
16
+
17
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
18
+
19
+ # Check the device of the model
20
+ device = next(model.parameters()).device
21
+
22
+ # Move input_ids to the same device as the model
23
+ input_ids = input_ids.to(device)
24
+
25
+ # Create the attention mask and pad token id
26
+ attention_mask = torch.ones_like(input_ids)
27
+ pad_token_id = tokenizer.eos_token_id
28
+
29
+ output = model.generate(
30
+ input_ids,
31
+ max_length=max_length,
32
+ num_return_sequences=1,
33
+ attention_mask=attention_mask,
34
+ pad_token_id=pad_token_id
35
+ )
36
+
37
+ return tokenizer.decode(output[0], skip_special_tokens=True)
38
+
39
+ def generate_query_response(prompt, max_length=200):
40
+
41
+ model = loaded_model
42
+ tokenizer = loaded_tokenizer
43
+
44
+ return generate_response(model, tokenizer, prompt, max_length)
45
+
46
+ #demo = gr.Interface(fn=greet, inputs="text", outputs="text")
47
+ #demo.launch()
48
+
49
+ iface = gr.Interface(
50
+ fn=generate_query_response,
51
+ inputs=[
52
+ gr.Textbox(lines=2, placeholder="Enter your medical query here..."),
53
+ gr.Slider(minimum=50, maximum=500, value=200, label="Maximum Length")
54
+ ],
55
+ outputs="text",
56
+ title="Medical Question Answering Bot",
57
+ description="Ask your medical questions to get relevant answers."
58
+ )
59
+
60
+ iface.launch(share=True)
requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
  # Dependencies for application are to be added to this file
2
 
3
- numpy
 
 
 
1
  # Dependencies for application are to be added to this file
2
 
3
+ numpy
4
+ gradio
5
+ tensorflow