|
|
|
|
|
import argparse |
|
import os |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from datasets import load_from_disk, load_dataset |
|
from diffusers import (DiffusionPipeline, DDPMScheduler, UNet2DModel, |
|
DDIMScheduler, AutoencoderKL) |
|
from diffusers.hub_utils import init_git_repo, push_to_hub |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from torchvision.transforms import ( |
|
Compose, |
|
Normalize, |
|
ToTensor, |
|
) |
|
import numpy as np |
|
from tqdm.auto import tqdm |
|
from librosa.util import normalize |
|
|
|
from audiodiffusion.mel import Mel |
|
from audiodiffusion import LatentAudioDiffusionPipeline, AudioDiffusionPipeline |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def main(args): |
|
output_dir = os.environ.get("SM_MODEL_DIR", None) or args.output_dir |
|
logging_dir = os.path.join(output_dir, args.logging_dir) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
if args.dataset_name is not None: |
|
if os.path.exists(args.dataset_name): |
|
dataset = load_from_disk(args.dataset_name, |
|
args.dataset_config_name)["train"] |
|
else: |
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
use_auth_token=True if args.use_auth_token else None, |
|
split="train", |
|
) |
|
else: |
|
dataset = load_dataset( |
|
"imagefolder", |
|
data_dir=args.train_data_dir, |
|
cache_dir=args.cache_dir, |
|
split="train", |
|
) |
|
|
|
resolution = dataset[0]['image'].height, dataset[0]['image'].width |
|
|
|
augmentations = Compose([ |
|
ToTensor(), |
|
Normalize([0.5], [0.5]), |
|
]) |
|
|
|
def transforms(examples): |
|
if args.vae is not None and vqvae.config['in_channels'] == 3: |
|
images = [ |
|
augmentations(image.convert('RGB')) |
|
for image in examples["image"] |
|
] |
|
else: |
|
images = [augmentations(image) for image in examples["image"]] |
|
return {"input": images} |
|
|
|
dataset.set_transform(transforms) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
dataset, batch_size=args.train_batch_size, shuffle=True) |
|
|
|
vqvae = None |
|
if args.vae is not None: |
|
try: |
|
vqvae = AutoencoderKL.from_pretrained(args.vae) |
|
except EnvironmentError: |
|
vqvae = LatentAudioDiffusionPipeline.from_pretrained( |
|
args.vae).vqvae |
|
|
|
with torch.no_grad(): |
|
latent_resolution = vqvae.encode( |
|
torch.zeros((1, 1) + |
|
resolution)).latent_dist.sample().shape[2:] |
|
|
|
if args.from_pretrained is not None: |
|
pipeline = { |
|
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline, |
|
'AudioDiffusionPipeline': AudioDiffusionPipeline |
|
}.get( |
|
DiffusionPipeline.get_config_dict( |
|
args.from_pretrained)['_class_name'], AudioDiffusionPipeline) |
|
pipeline = pipeline.from_pretrained(args.from_pretrained) |
|
model = pipeline.unet |
|
if hasattr(pipeline, 'vqvae'): |
|
vqvae = pipeline.vqvae |
|
else: |
|
model = UNet2DModel( |
|
sample_size=resolution if vqvae is None else latent_resolution, |
|
in_channels=1 |
|
if vqvae is None else vqvae.config['latent_channels'], |
|
out_channels=1 |
|
if vqvae is None else vqvae.config['latent_channels'], |
|
layers_per_block=2, |
|
block_out_channels=(128, 128, 256, 256, 512, 512), |
|
down_block_types=( |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"AttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
up_block_types=( |
|
"UpBlock2D", |
|
"AttnUpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
), |
|
) |
|
|
|
if args.scheduler == "ddpm": |
|
noise_scheduler = DDPMScheduler( |
|
num_train_timesteps=args.num_train_steps) |
|
else: |
|
noise_scheduler = DDIMScheduler( |
|
num_train_timesteps=args.num_train_steps) |
|
|
|
optimizer = torch.optim.AdamW( |
|
model.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=(len(train_dataloader) * args.num_epochs) // |
|
args.gradient_accumulation_steps, |
|
) |
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, lr_scheduler) |
|
|
|
ema_model = EMAModel( |
|
getattr(model, "module", model), |
|
inv_gamma=args.ema_inv_gamma, |
|
power=args.ema_power, |
|
max_value=args.ema_max_decay, |
|
) |
|
|
|
if args.push_to_hub: |
|
repo = init_git_repo(args, at_init=True) |
|
|
|
if accelerator.is_main_process: |
|
run = os.path.split(__file__)[-1].split(".")[0] |
|
accelerator.init_trackers(run) |
|
|
|
mel = Mel(x_res=resolution[1], |
|
y_res=resolution[0], |
|
hop_length=args.hop_length) |
|
|
|
global_step = 0 |
|
for epoch in range(args.num_epochs): |
|
progress_bar = tqdm(total=len(train_dataloader), |
|
disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description(f"Epoch {epoch}") |
|
|
|
if epoch < args.start_epoch: |
|
for step in range(len(train_dataloader)): |
|
optimizer.step() |
|
lr_scheduler.step() |
|
progress_bar.update(1) |
|
global_step += 1 |
|
if epoch == args.start_epoch - 1 and args.use_ema: |
|
ema_model.optimization_step = global_step |
|
continue |
|
|
|
model.train() |
|
for step, batch in enumerate(train_dataloader): |
|
clean_images = batch["input"] |
|
|
|
if vqvae is not None: |
|
vqvae.to(clean_images.device) |
|
with torch.no_grad(): |
|
clean_images = vqvae.encode( |
|
clean_images).latent_dist.sample() |
|
|
|
clean_images = clean_images * 0.18215 |
|
|
|
|
|
noise = torch.randn(clean_images.shape).to(clean_images.device) |
|
bsz = clean_images.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, |
|
noise_scheduler.num_train_timesteps, |
|
(bsz, ), |
|
device=clean_images.device, |
|
).long() |
|
|
|
|
|
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise, |
|
timesteps) |
|
|
|
with accelerator.accumulate(model): |
|
|
|
noise_pred = model(noisy_images, timesteps)["sample"] |
|
loss = F.mse_loss(noise_pred, noise) |
|
accelerator.backward(loss) |
|
|
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(model.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
if args.use_ema: |
|
ema_model.step(model) |
|
optimizer.zero_grad() |
|
|
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
logs = { |
|
"loss": loss.detach().item(), |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
"step": global_step, |
|
} |
|
if args.use_ema: |
|
logs["ema_decay"] = ema_model.decay |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
progress_bar.close() |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if ( |
|
epoch + 1 |
|
) % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: |
|
if vqvae is not None: |
|
pipeline = LatentAudioDiffusionPipeline( |
|
unet=accelerator.unwrap_model( |
|
ema_model.averaged_model if args.use_ema else model |
|
), |
|
vqvae=vqvae, |
|
scheduler=noise_scheduler) |
|
else: |
|
pipeline = AudioDiffusionPipeline( |
|
unet=accelerator.unwrap_model( |
|
ema_model.averaged_model if args.use_ema else model |
|
), |
|
scheduler=noise_scheduler, |
|
) |
|
|
|
|
|
if args.push_to_hub: |
|
try: |
|
push_to_hub( |
|
args, |
|
pipeline, |
|
repo, |
|
commit_message=f"Epoch {epoch}", |
|
blocking=False, |
|
) |
|
except NameError: |
|
pass |
|
else: |
|
pipeline.save_pretrained(output_dir) |
|
|
|
if (epoch + 1) % args.save_images_epochs == 0: |
|
generator = torch.manual_seed(42) |
|
|
|
images, (sample_rate, audios) = pipeline( |
|
mel=mel, |
|
generator=generator, |
|
batch_size=args.eval_batch_size, |
|
) |
|
|
|
|
|
images = np.array([ |
|
np.frombuffer(image.tobytes(), dtype="uint8").reshape( |
|
(len(image.getbands()), image.height, image.width)) |
|
for image in images |
|
]) |
|
accelerator.trackers[0].writer.add_images( |
|
"test_samples", images, epoch) |
|
for _, audio in enumerate(audios): |
|
accelerator.trackers[0].writer.add_audio( |
|
f"test_audio_{_}", |
|
normalize(audio), |
|
epoch, |
|
sample_rate=sample_rate, |
|
) |
|
accelerator.wait_for_everyone() |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Simple example of a training script.") |
|
parser.add_argument("--local_rank", type=int, default=-1) |
|
parser.add_argument("--dataset_name", type=str, default=None) |
|
parser.add_argument("--dataset_config_name", type=str, default=None) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help="A folder containing the training data.", |
|
) |
|
parser.add_argument("--output_dir", type=str, default="ddpm-model-64") |
|
parser.add_argument("--overwrite_output_dir", type=bool, default=False) |
|
parser.add_argument("--cache_dir", type=str, default=None) |
|
parser.add_argument("--train_batch_size", type=int, default=16) |
|
parser.add_argument("--eval_batch_size", type=int, default=16) |
|
parser.add_argument("--num_epochs", type=int, default=100) |
|
parser.add_argument("--save_images_epochs", type=int, default=10) |
|
parser.add_argument("--save_model_epochs", type=int, default=10) |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1) |
|
parser.add_argument("--learning_rate", type=float, default=1e-4) |
|
parser.add_argument("--lr_scheduler", type=str, default="cosine") |
|
parser.add_argument("--lr_warmup_steps", type=int, default=500) |
|
parser.add_argument("--adam_beta1", type=float, default=0.95) |
|
parser.add_argument("--adam_beta2", type=float, default=0.999) |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-6) |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08) |
|
parser.add_argument("--use_ema", type=bool, default=True) |
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0) |
|
parser.add_argument("--ema_power", type=float, default=3 / 4) |
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999) |
|
parser.add_argument("--push_to_hub", type=bool, default=False) |
|
parser.add_argument("--use_auth_token", type=bool, default=False) |
|
parser.add_argument("--hub_token", type=str, default=None) |
|
parser.add_argument("--hub_model_id", type=str, default=None) |
|
parser.add_argument("--hub_private_repo", type=bool, default=False) |
|
parser.add_argument("--logging_dir", type=str, default="logs") |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU."), |
|
) |
|
parser.add_argument("--hop_length", type=int, default=512) |
|
parser.add_argument("--from_pretrained", type=str, default=None) |
|
parser.add_argument("--start_epoch", type=int, default=0) |
|
parser.add_argument("--num_train_steps", type=int, default=1000) |
|
parser.add_argument("--scheduler", |
|
type=str, |
|
default="ddpm", |
|
help="ddpm or ddim") |
|
parser.add_argument("--vae", |
|
type=str, |
|
default=None, |
|
help="pretrained VAE model for latent diffusion") |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError( |
|
"You must specify either a dataset name from the hub or a train data directory." |
|
) |
|
if args.dataset_name is not None and args.dataset_name == args.hub_model_id: |
|
raise ValueError( |
|
"The local dataset name must be different from the hub model id.") |
|
|
|
main(args) |
|
|