clayton07's picture
Update app.py
b5ba0b7 verified
raw
history blame
4.75 kB
import streamlit as st
import os
import torch
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Caching the model loading
@st.cache_resource
def load_rag_model():
return RAGMultiModalModel.from_pretrained("vidore/colpali")
@st.cache_resource
def load_qwen_model():
return Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to(device).eval()
@st.cache_resource
def load_processor():
return AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
# Load models
RAG = load_rag_model()
model = load_qwen_model()
processor = load_processor()
st.title("Multimodal RAG App")
st.warning("⚠️ Disclaimer: This app is currently running on CPU, which may result in slow processing times. For optimal performance, download and run the app locally on a machine with GPU support.")
# Add download link
st.markdown("[📥 Download the app code](https://huggingface.co/spaces/clayton07/colpali-qwen2-ocr/blob/main/app.py)")
# Initialize session state for tracking if index is created
if 'index_created' not in st.session_state:
st.session_state.index_created = False
# File uploader
image_source = st.radio("Choose image source:", ("Upload an image", "Use example image"))
if image_source == "Upload an image":
uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"])
else:
# Use a pre-defined example image
example_image_path = "hindi-qp.jpg"
uploaded_file = example_image_path
if uploaded_file is not None:
# If using the example image, no need to save it
if image_source == "Upload an image":
with open("temp_image.png", "wb") as f:
f.write(uploaded_file.getvalue())
image_path = "temp_image.png"
else:
image_path = uploaded_file
if not st.session_state.index_created:
# Initialize the index for the first image
RAG.index(
input_path=image_path,
index_name="temp_index",
store_collection_with_index=False,
overwrite=True
)
st.session_state.index_created = True
else:
# Add to the existing index for subsequent images
RAG.add_to_index(
input_item=image_path,
store_collection_with_index=False
)
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Text query input
text_query = st.text_input("Enter your query about the image:")
max_new_tokens = st.slider("Max new tokens for response", min_value=100, max_value=1000, value=100, step=10)
if text_query:
with st.spinner(
f'Processing your query... This may take a while due to CPU processing. Generating up to {max_new_tokens} tokens.'):
# Perform RAG search
results = RAG.search(text_query, k=2)
# Process with Qwen2VL model
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": text_query},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) # Using the slider value here
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Display results
st.subheader("Results:")
st.write(output_text[0])
# Clean up temporary file
if image_source == "Upload an image":
os.remove("temp_image.png")
else:
st.write("Please upload an image to get started.")