Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from byaldi import RAGMultiModalModel
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
|
8 |
+
# Check for CUDA availability
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
print(f"Using device: {device}")
|
11 |
+
|
12 |
+
# Caching the model loading
|
13 |
+
@st.cache_resource
|
14 |
+
def load_rag_model():
|
15 |
+
return RAGMultiModalModel.from_pretrained("vidore/colpali")
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_qwen_model():
|
19 |
+
return Qwen2VLForConditionalGeneration.from_pretrained(
|
20 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
21 |
+
trust_remote_code=True,
|
22 |
+
torch_dtype=torch.bfloat16
|
23 |
+
).to(device).eval()
|
24 |
+
|
25 |
+
@st.cache_resource
|
26 |
+
def load_processor():
|
27 |
+
return AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
28 |
+
|
29 |
+
# Load models
|
30 |
+
RAG = load_rag_model()
|
31 |
+
model = load_qwen_model()
|
32 |
+
processor = load_processor()
|
33 |
+
|
34 |
+
st.title("Multimodal RAG App")
|
35 |
+
|
36 |
+
st.warning("⚠️ Disclaimer: This app is currently running on CPU, which may result in slow processing times. For optimal performance, download and run the app locally on a machine with GPU support.")
|
37 |
+
|
38 |
+
# Add download link
|
39 |
+
st.markdown("[📥 Download the app code](https://huggingface.co/spaces/clayton07/colpali-qwen2-ocr/blob/main/app.py)")
|
40 |
+
|
41 |
+
# Initialize session state for tracking if index is created
|
42 |
+
if 'index_created' not in st.session_state:
|
43 |
+
st.session_state.index_created = False
|
44 |
+
|
45 |
+
# File uploader
|
46 |
+
image_source = st.radio("Choose image source:", ("Upload an image", "Use example image"))
|
47 |
+
|
48 |
+
if image_source == "Upload an image":
|
49 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"])
|
50 |
+
else:
|
51 |
+
# Use a pre-defined example image
|
52 |
+
example_image_path = "hindi-qp.jpg"
|
53 |
+
uploaded_file = example_image_path
|
54 |
+
|
55 |
+
if uploaded_file is not None:
|
56 |
+
# If using the example image, no need to save it
|
57 |
+
if image_source == "Upload an image":
|
58 |
+
with open("temp_image.png", "wb") as f:
|
59 |
+
f.write(uploaded_file.getvalue())
|
60 |
+
image_path = "temp_image.png"
|
61 |
+
else:
|
62 |
+
image_path = uploaded_file
|
63 |
+
|
64 |
+
if not st.session_state.index_created:
|
65 |
+
# Initialize the index for the first image
|
66 |
+
RAG.index(
|
67 |
+
input_path=image_path,
|
68 |
+
index_name="temp_index",
|
69 |
+
store_collection_with_index=False,
|
70 |
+
overwrite=True
|
71 |
+
)
|
72 |
+
st.session_state.index_created = True
|
73 |
+
else:
|
74 |
+
# Add to the existing index for subsequent images
|
75 |
+
RAG.add_to_index(
|
76 |
+
input_item=image_path,
|
77 |
+
store_collection_with_index=False
|
78 |
+
)
|
79 |
+
|
80 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
81 |
+
|
82 |
+
# Text query input
|
83 |
+
text_query = st.text_input("Enter your query about the image:")
|
84 |
+
|
85 |
+
if text_query:
|
86 |
+
# Perform RAG search
|
87 |
+
results = RAG.search(text_query, k=2)
|
88 |
+
|
89 |
+
# Process with Qwen2VL model
|
90 |
+
messages = [
|
91 |
+
{
|
92 |
+
"role": "user",
|
93 |
+
"content": [
|
94 |
+
{
|
95 |
+
"type": "image",
|
96 |
+
"image": image_path,
|
97 |
+
},
|
98 |
+
{"type": "text", "text": text_query},
|
99 |
+
],
|
100 |
+
}
|
101 |
+
]
|
102 |
+
text = processor.apply_chat_template(
|
103 |
+
messages, tokenize=False, add_generation_prompt=True
|
104 |
+
)
|
105 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
106 |
+
inputs = processor(
|
107 |
+
text=[text],
|
108 |
+
images=image_inputs,
|
109 |
+
videos=video_inputs,
|
110 |
+
padding=True,
|
111 |
+
return_tensors="pt",
|
112 |
+
)
|
113 |
+
inputs = inputs.to(device)
|
114 |
+
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
115 |
+
generated_ids_trimmed = [
|
116 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
117 |
+
]
|
118 |
+
output_text = processor.batch_decode(
|
119 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
120 |
+
)
|
121 |
+
|
122 |
+
# Display results
|
123 |
+
st.subheader("Results:")
|
124 |
+
st.write(output_text[0])
|
125 |
+
|
126 |
+
# Clean up temporary file
|
127 |
+
if image_source == "Upload an image":
|
128 |
+
os.remove("temp_image.png")
|
129 |
+
else:
|
130 |
+
st.write("Please upload an image to get started.")
|