wecnet / app.py
ccm's picture
Update app.py
72b668c
raw
history blame
13.1 kB
# For neural networks
import keras
# For random calculations
import numpy
# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# This function loads a fuckton of data
def load_data():
# Open all the files we downloaded at the beginning and take out hte good bits
curves = numpy.load('data_curves.npz')['curves']
geometry = numpy.load('data_geometry.npz')['geometry']
constants = numpy.load('constants.npz')
S = constants['S']
N = constants['N']
D = constants['D']
F = constants['F']
G = constants['G']
# Some of the good bits need additional processining
new_curves = numpy.zeros((S*N, D * F))
for i, curveset in enumerate(curves):
new_curves[i, :] = curveset.T.flatten() / 1000000
new_geometry = numpy.zeros((S*N, G * G * G))
for i, geometryset in enumerate(geometry):
new_geometry[i, :] = geometryset.T.flatten()
# Return good bits to user
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
import gradio
import pandas
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
class Network(object):
def __init__(self, structure, weights):
# Instantiate variables
self.curves = curves
self.new_curves = new_curves
self.geometry = geometry
self.new_geometry = new_geometry
self.S = S
self.N = N
self.D = D
self.F = F
self.G = G
# Load network
with open(structure, 'r') as file:
self.network = keras.models.model_from_json(file.read())
self.network.load_weights(weights)
def analysis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_curves[idx].reshape((3, self.F))
predicted_output = predicted_output.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
# return idx, other_data_input, true_output, predicted_output
return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)
def synthesis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output, true_output
def synthesis_from_spectrum(self, other_data_input):
# Get the input
data_input = other_data_input.reshape((1, 3*self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output
def get_geometry(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return other_data_input
def get_performance(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
table = pandas.concat([fd, df_pred], axis=1)
return table
import plotly.graph_objects as go
def plotly_fig(values):
X, Y, Z = numpy.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
fig = go.Figure(data=go.Volume(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=-0.1,
isomax=0.8,
opacity=0.1, # needs to be small to see through all surfaces
surface_count=21, # needs to be a large number for good volume rendering
))
return fig
value_net = Network("16forward_structure.json", "16forward_weights.h5")
def performance(index):
return value_net.get_performance(index)
def geometry(index):
values = value_net.get_geometry(index)
return plotly_fig(values)
def simple_analysis(index):
forward_net = Network("16forward_structure.json", "16forward_weights.h5")
return forward_net.analysis(index)
def simple_synthesis(index):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred, true = inverse_net.synthesis(index)
return plotly_fig(pred), plotly_fig(true)
def synthesis_from_spectrum(df):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred = inverse_net.synthesis_from_spectrum(df.to_numpy()[:, 1:])
return plotly_fig(pred)
def change_textbox(choice):
if choice == "cylinder":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
elif choice == "sphere":
return [gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
elif choice == "box":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True)]
elif choice == "wedge":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True)]
elif choice == "cone":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
def geometry_change(choice):
if choice == "Generate Shape from Parameters":
return [gradio.Block.update(visible=True), gradio.Block.update(visible=False)]
elif choice == "Pick Shape from Dataset":
return [gradio.Block.update(visible=False), gradio.Block.update(visible=True)]
with gradio.Blocks() as demo:
with gradio.Accordion("✨ Read about the ML model here! ✨", open=False):
with gradio.Row():
with gradio.Column():
gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks")
gradio.HTML("Christopher McComb, Carnegie Mellon University")
gradio.Markdown("Additive manufacturing is advantageous for producing lightweight components while maintaining function and form. This ability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be necessary to use multiple lattice cell types, also known as multi-lattice structures. In such structures, abrupt transitions between geometries may cause stress concentrations, making the boundary a primary failure point; thus, transition regions should be created between each lattice cell type. Although computational approaches have been proposed, smooth transition regions are still difficult to intuit and design, especially between lattices of drastically different geometries. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells. In particular, the work focuses on identifying the relationships that exist within the latent space produced by the variational autoencoder. Through computational experimentation, it was found that the smoothness of transition regions was higher when the endpoints were located closer together in the latent space.")
with gradio.Column():
download = gradio.HTML("<a href=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf\" style=\"width: 60%; display: block; margin: auto;\"><img src=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/coverpage.png\"></a>")
with gradio.Tab("Analysis"):
with gradio.Row():
with gradio.Column():
whence_commeth_geometry = gradio.Radio(
["Construct Shape from Parameters", "Pick Shape from Dataset"], label="How would you like to generate the shape of the offshore structure for analysis?", value="Construct Shape from Parameters"
)
whence_commeth_geometry.change(fn=geometry_change, inputs=[whence_commeth_geometry], outputs=[asdfa, asdfb])
with gradio.Accordion("Geometry from Parameters", open=True) as asdfa:
radio = gradio.Radio(
["box", "cone", "cylinder", "sphere", "wedge"], label="What kind of shape would you like to generate?", value="box"
)
height = gradio.Slider(label="Height", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
width = gradio.Slider(label="Width", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
diameter = gradio.Slider(label="Diameter", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=False)
length = gradio.Slider(label="Length", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
radio.change(fn=change_textbox, inputs=radio, outputs=[height, width, diameter, length])
with gradio.Accordion("Geometry from Dataset", open=False) as asdfb:
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
geo = gradio.Plot(label="Geometry")
with gradio.Row():
btn2 = gradio.Button("Estimate Spectrum")
with gradio.Row():
with gradio.Column():
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
with gradio.Column():
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")
btn1.click(fn=geometry, inputs=[num], outputs=[geo])
btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
with gradio.Tab("Synthesis"):
with gradio.Tab("Spectrum from Dataset"):
with gradio.Row():
with gradio.Column():
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
with gradio.Column():
pred = gradio.Plot(label="Predicted")
with gradio.Column():
true = gradio.Plot(label="True")
btn1.click(fn=performance, inputs=[num], outputs=[perf])
btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
with gradio.Tab("Spectrum from DataFrame"):
with gradio.Row():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
pred = gradio.Plot(label="Predicted")
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
demo.launch()