Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,1087 @@
|
|
2 |
import keras
|
3 |
# For random calculations
|
4 |
import numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Disable eager execution because its bad
|
7 |
from tensorflow.python.framework.ops import disable_eager_execution
|
8 |
disable_eager_execution()
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# This function loads a fuckton of data
|
12 |
def load_data():
|
13 |
# Open all the files we downloaded at the beginning and take out hte good bits
|
@@ -31,9 +1106,6 @@ def load_data():
|
|
31 |
|
32 |
# Return good bits to user
|
33 |
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
|
34 |
-
|
35 |
-
import gradio
|
36 |
-
import pandas
|
37 |
|
38 |
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
|
39 |
|
|
|
2 |
import keras
|
3 |
# For random calculations
|
4 |
import numpy
|
5 |
+
|
6 |
+
import gradio
|
7 |
+
import pandas
|
8 |
+
|
9 |
+
|
10 |
+
# New for geometry creation
|
11 |
+
import glob
|
12 |
+
import os
|
13 |
+
import shutil
|
14 |
+
import stat
|
15 |
+
import math
|
16 |
+
import platform
|
17 |
+
import scipy.spatial
|
18 |
|
19 |
# Disable eager execution because its bad
|
20 |
from tensorflow.python.framework.ops import disable_eager_execution
|
21 |
disable_eager_execution()
|
22 |
|
23 |
|
24 |
+
# Big bunch of geometry stuff
|
25 |
+
import glob
|
26 |
+
import os
|
27 |
+
import shutil
|
28 |
+
import stat
|
29 |
+
import math
|
30 |
+
import platform
|
31 |
+
import scipy.spatial
|
32 |
+
|
33 |
+
class Mesh:
|
34 |
+
def __init__(self):
|
35 |
+
# Define blank values
|
36 |
+
self.np = 0
|
37 |
+
self.nf = 0
|
38 |
+
self.X = []
|
39 |
+
self.Y = []
|
40 |
+
self.Z = []
|
41 |
+
self.P = []
|
42 |
+
|
43 |
+
def combine_meshes(self, ob1, ob2):
|
44 |
+
# Check for largest mesh
|
45 |
+
if ob1.nf < ob2.nf:
|
46 |
+
coin_test = ob1.make_coin()
|
47 |
+
coin_target = ob2.make_coin()
|
48 |
+
else:
|
49 |
+
coin_test = ob2.make_coin()
|
50 |
+
coin_target = ob1.make_coin()
|
51 |
+
# Check for duplicate panels
|
52 |
+
deletion_list = []
|
53 |
+
for iF in range(numpy.size(coin_test[1, 1, :])):
|
54 |
+
panel_test = coin_test[:, :, iF]
|
55 |
+
for iFF in range(numpy.size(coin_target[1, 1, :])):
|
56 |
+
panel_target = coin_target[:, :, iFF]
|
57 |
+
if numpy.sum(panel_test == panel_target) == 12:
|
58 |
+
coin_target = numpy.delete(coin_target, iFF, 2)
|
59 |
+
deletion_list.append(iF)
|
60 |
+
coin_test = numpy.delete(coin_test, deletion_list, 2)
|
61 |
+
|
62 |
+
# Concatenate unique meshes
|
63 |
+
coin = numpy.concatenate((coin_test, coin_target), axis=2)
|
64 |
+
self.np = numpy.size(coin[1, 1, :]) * 4
|
65 |
+
self.nf = numpy.size(coin[1, 1, :])
|
66 |
+
self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
67 |
+
self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
68 |
+
self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
69 |
+
self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)
|
70 |
+
|
71 |
+
iP = 0
|
72 |
+
for iF in range(numpy.size(coin[1, 1, :])):
|
73 |
+
for iC in range(4):
|
74 |
+
self.X[iP] = coin[0, iC, iF]
|
75 |
+
self.Y[iP] = coin[1, iC, iF]
|
76 |
+
self.Z[iP] = coin[2, iC, iF]
|
77 |
+
iP += 1
|
78 |
+
self.P[iF, 0] = 1 + iF * 4
|
79 |
+
self.P[iF, 1] = 2 + iF * 4
|
80 |
+
self.P[iF, 2] = 3 + iF * 4
|
81 |
+
self.P[iF, 3] = 4 + iF * 4
|
82 |
+
|
83 |
+
def make_coin(self):
|
84 |
+
coin = numpy.zeros((3, 4, self.nf))
|
85 |
+
for iF in range(self.nf):
|
86 |
+
for iC in range(4):
|
87 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
88 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
89 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
90 |
+
return coin
|
91 |
+
|
92 |
+
def delete_horizontal_panels(self):
|
93 |
+
coin = self.make_coin()
|
94 |
+
apex = numpy.min(self.Z)
|
95 |
+
zLoc = numpy.zeros(4)
|
96 |
+
deletion_list = []
|
97 |
+
|
98 |
+
# Check every panel for horizontality and higher position than lowest point
|
99 |
+
for iP in range(self.nf):
|
100 |
+
for iC in range(4):
|
101 |
+
zLoc[iC] = coin[2, iC, iP]
|
102 |
+
if numpy.abs(numpy.mean(zLoc) - zLoc[0]) < 0.001 and numpy.mean(zLoc) > apex:
|
103 |
+
deletion_list.append(iP)
|
104 |
+
|
105 |
+
# Delete selected panels
|
106 |
+
coin = numpy.delete(coin, deletion_list, 2)
|
107 |
+
|
108 |
+
# Remake mesh
|
109 |
+
self.np = numpy.size(coin[1, 1, :]) * 4
|
110 |
+
self.nf = numpy.size(coin[1, 1, :])
|
111 |
+
self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
112 |
+
self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
113 |
+
self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
|
114 |
+
self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)
|
115 |
+
|
116 |
+
iP = 0
|
117 |
+
for iF in range(numpy.size(coin[1, 1, :])):
|
118 |
+
for iC in range(4):
|
119 |
+
self.X[iP] = coin[0, iC, iF]
|
120 |
+
self.Y[iP] = coin[1, iC, iF]
|
121 |
+
self.Z[iP] = coin[2, iC, iF]
|
122 |
+
iP += 1
|
123 |
+
self.P[iF, 0] = 1 + (iF) * 4
|
124 |
+
self.P[iF, 1] = 2 + (iF) * 4
|
125 |
+
self.P[iF, 2] = 3 + (iF) * 4
|
126 |
+
self.P[iF, 3] = 4 + (iF) * 4
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
def writeMesh(msh, filename):
|
132 |
+
with open(filename, 'w') as f:
|
133 |
+
f.write('{:d}\n'.format(msh.np))
|
134 |
+
f.write('{:d}\n'.format(msh.nf))
|
135 |
+
for iP in range(msh.np):
|
136 |
+
f.write(' {:.7f} {:.7f} {:.7f}\n'.format(msh.X[iP], msh.Y[iP], msh.Z[iP]))
|
137 |
+
for iF in range(msh.nf):
|
138 |
+
f.write(' {:d} {:d} {:d} {:d}\n'.format(msh.P[iF, 0], msh.P[iF, 1], msh.P[iF, 2], msh.P[iF, 3]))
|
139 |
+
return None
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
class box:
|
144 |
+
def __init__(self, length, width, height, cCor):
|
145 |
+
self.length = length
|
146 |
+
self.width = width
|
147 |
+
self.height = height
|
148 |
+
self.xC = cCor[0]
|
149 |
+
self.yC = cCor[1]
|
150 |
+
self.zC = cCor[2]
|
151 |
+
self.name = 'box'
|
152 |
+
self.panelize()
|
153 |
+
self.translate(self.xC, self.yC, self.zC)
|
154 |
+
|
155 |
+
def panelize(self):
|
156 |
+
self.nf = 6
|
157 |
+
self.np = 8
|
158 |
+
self.X = numpy.array(
|
159 |
+
[-self.length / 2.0, self.length / 2.0, -self.length / 2.0, self.length / 2.0, -self.length / 2.0,
|
160 |
+
self.length / 2.0, -self.length / 2.0, self.length / 2.0])
|
161 |
+
self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
|
162 |
+
-self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
|
163 |
+
self.Z = numpy.array(
|
164 |
+
[-self.height / 2.0, -self.height / 2.0, self.height / 2.0, self.height / 2.0, -self.height / 2.0,
|
165 |
+
-self.height / 2.0, self.height / 2.0, self.height / 2.0])
|
166 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
167 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
168 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
169 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
170 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
171 |
+
self.P[4, :] = numpy.array([2, 6, 5, 1])
|
172 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
173 |
+
# Define triangles for plotting
|
174 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
175 |
+
iT = 0
|
176 |
+
for iTr in range(self.nf):
|
177 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
178 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
179 |
+
iT += 2
|
180 |
+
|
181 |
+
def translate(self, xT, yT, zT):
|
182 |
+
self.X += xT
|
183 |
+
self.Y += yT
|
184 |
+
self.Z += zT
|
185 |
+
|
186 |
+
def rotate(self, a1, a2, theta):
|
187 |
+
R = numpy.zeros([3, 3])
|
188 |
+
# Normal vector through origin
|
189 |
+
u = a2[0] - a1[0]
|
190 |
+
v = a2[1] - a1[1]
|
191 |
+
w = a2[2] - a1[2]
|
192 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
193 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
194 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
195 |
+
# Translate mesh so that rotation axis starts from the origin
|
196 |
+
self.X -= a1[0]
|
197 |
+
self.Y -= a1[1]
|
198 |
+
self.Z -= a1[2]
|
199 |
+
|
200 |
+
# Rotation matrix
|
201 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
202 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
203 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
204 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
205 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
206 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
207 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
208 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
209 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
210 |
+
|
211 |
+
for iP in range(self.np):
|
212 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
213 |
+
p2 = numpy.dot(R, p1)
|
214 |
+
self.X[iP] = p2[0]
|
215 |
+
self.Y[iP] = p2[1]
|
216 |
+
self.Z[iP] = p2[2]
|
217 |
+
|
218 |
+
# Translate back to original position
|
219 |
+
|
220 |
+
self.X += a1[0]
|
221 |
+
self.Y += a1[1]
|
222 |
+
self.Z += a1[2]
|
223 |
+
|
224 |
+
def makeCoin(self):
|
225 |
+
coin = numpy.zeros((3, 4, self.nf))
|
226 |
+
for iF in range(self.nf):
|
227 |
+
for iC in range(4):
|
228 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
229 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
230 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
231 |
+
return coin
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
class cone:
|
237 |
+
def __init__(self, diameter, height, cCor):
|
238 |
+
self.diameter = diameter
|
239 |
+
self.height = height
|
240 |
+
self.xC = cCor[0]
|
241 |
+
self.yC = cCor[1]
|
242 |
+
self.zC = cCor[2]
|
243 |
+
self.name = 'cone'
|
244 |
+
self.panelize()
|
245 |
+
self.translate(self.xC, self.yC, self.zC)
|
246 |
+
|
247 |
+
def panelize(self):
|
248 |
+
Ntheta = 18
|
249 |
+
Nz = 3
|
250 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
251 |
+
self.nf = 0
|
252 |
+
self.np = 0
|
253 |
+
r = [0, self.diameter / 2.0, 0]
|
254 |
+
z = [0, 0, -self.height]
|
255 |
+
self.X = []
|
256 |
+
self.Y = []
|
257 |
+
self.Z = []
|
258 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
259 |
+
n = len(r)
|
260 |
+
|
261 |
+
for iT in range(Ntheta):
|
262 |
+
for iN in range(n):
|
263 |
+
self.X.append(r[iN] * numpy.cos(theta[iT]))
|
264 |
+
self.Y.append(r[iN] * numpy.sin(theta[iT]))
|
265 |
+
self.Z.append(z[iN])
|
266 |
+
self.np += 1
|
267 |
+
|
268 |
+
iP = 0
|
269 |
+
for iN in range(1, n):
|
270 |
+
for iT in range(1, Ntheta):
|
271 |
+
self.P[iP, 0] = iN + n * (iT - 1)
|
272 |
+
self.P[iP, 1] = iN + 1 + n * (iT - 1)
|
273 |
+
self.P[iP, 2] = iN + 1 + n * iT
|
274 |
+
self.P[iP, 3] = iN + n * iT
|
275 |
+
self.nf += 1
|
276 |
+
iP += 1
|
277 |
+
|
278 |
+
self.X = numpy.array(self.X)
|
279 |
+
self.Y = numpy.array(self.Y)
|
280 |
+
self.Z = numpy.array(self.Z)
|
281 |
+
# Define triangles for plotting
|
282 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
283 |
+
iT = 0
|
284 |
+
for iTr in range(self.nf):
|
285 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
286 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
287 |
+
iT += 2
|
288 |
+
|
289 |
+
def translate(self, xT, yT, zT):
|
290 |
+
self.X += xT
|
291 |
+
self.Y += yT
|
292 |
+
self.Z += zT
|
293 |
+
|
294 |
+
def rotate(self, a1, a2, theta):
|
295 |
+
R = numpy.zeros([3, 3])
|
296 |
+
# Normal vector through origin
|
297 |
+
u = a2[0] - a1[0]
|
298 |
+
v = a2[1] - a1[1]
|
299 |
+
w = a2[2] - a1[2]
|
300 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
301 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
302 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
303 |
+
# Translate mesh so that rotation axis starts from the origin
|
304 |
+
self.X -= a1[0]
|
305 |
+
self.Y -= a1[1]
|
306 |
+
self.Z -= a1[2]
|
307 |
+
|
308 |
+
# Rotation matrix
|
309 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
310 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
311 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
312 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
313 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
314 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
315 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
316 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
317 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
318 |
+
|
319 |
+
for iP in range(self.np):
|
320 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
321 |
+
p2 = numpy.dot(R, p1)
|
322 |
+
self.X[iP] = p2[0]
|
323 |
+
self.Y[iP] = p2[1]
|
324 |
+
self.Z[iP] = p2[2]
|
325 |
+
|
326 |
+
# Translate back to original position
|
327 |
+
|
328 |
+
self.X += a1[0]
|
329 |
+
self.Y += a1[1]
|
330 |
+
self.Z += a1[2]
|
331 |
+
|
332 |
+
def makeCoin(self):
|
333 |
+
coin = numpy.zeros((3, 4, self.nf))
|
334 |
+
for iF in range(self.nf):
|
335 |
+
for iC in range(4):
|
336 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
337 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
338 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
339 |
+
return coin
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
class cylinder:
|
344 |
+
def __init__(self, diameter, height, cCor):
|
345 |
+
self.diameter = diameter
|
346 |
+
self.height = height
|
347 |
+
self.xC = cCor[0]
|
348 |
+
self.yC = cCor[1]
|
349 |
+
self.zC = cCor[2]
|
350 |
+
self.name = 'cylinder'
|
351 |
+
self.panelize()
|
352 |
+
self.translate(self.xC, self.yC, self.zC)
|
353 |
+
|
354 |
+
def panelize(self):
|
355 |
+
Ntheta = 18
|
356 |
+
Nz = 3
|
357 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
358 |
+
self.nf = 0
|
359 |
+
self.np = 0
|
360 |
+
r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
|
361 |
+
z = [0, 0, -self.height, -self.height]
|
362 |
+
self.X = []
|
363 |
+
self.Y = []
|
364 |
+
self.Z = []
|
365 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
366 |
+
n = len(r)
|
367 |
+
|
368 |
+
for iT in range(Ntheta):
|
369 |
+
for iN in range(n):
|
370 |
+
self.X.append(r[iN] * numpy.cos(theta[iT]))
|
371 |
+
self.Y.append(r[iN] * numpy.sin(theta[iT]))
|
372 |
+
self.Z.append(z[iN])
|
373 |
+
self.np += 1
|
374 |
+
|
375 |
+
iP = 0
|
376 |
+
for iN in range(1, n):
|
377 |
+
for iT in range(1, Ntheta):
|
378 |
+
self.P[iP, 0] = iN + n * (iT - 1)
|
379 |
+
self.P[iP, 1] = iN + 1 + n * (iT - 1)
|
380 |
+
self.P[iP, 2] = iN + 1 + n * iT
|
381 |
+
self.P[iP, 3] = iN + n * iT
|
382 |
+
self.nf += 1
|
383 |
+
iP += 1
|
384 |
+
|
385 |
+
self.X = numpy.array(self.X)
|
386 |
+
self.Y = numpy.array(self.Y)
|
387 |
+
self.Z = numpy.array(self.Z)
|
388 |
+
# Define triangles for plotting
|
389 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
390 |
+
iT = 0
|
391 |
+
for iTr in range(self.nf):
|
392 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
393 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
394 |
+
iT += 2
|
395 |
+
|
396 |
+
def translate(self, xT, yT, zT):
|
397 |
+
self.X += xT
|
398 |
+
self.Y += yT
|
399 |
+
self.Z += zT
|
400 |
+
|
401 |
+
def rotate(self, a1, a2, theta):
|
402 |
+
R = numpy.zeros([3, 3])
|
403 |
+
# Normal vector through origin
|
404 |
+
u = a2[0] - a1[0]
|
405 |
+
v = a2[1] - a1[1]
|
406 |
+
w = a2[2] - a1[2]
|
407 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
408 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
409 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
410 |
+
# Translate mesh so that rotation axis starts from the origin
|
411 |
+
self.X -= a1[0]
|
412 |
+
self.Y -= a1[1]
|
413 |
+
self.Z -= a1[2]
|
414 |
+
|
415 |
+
# Rotation matrix
|
416 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
417 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
418 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
419 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
420 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
421 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
422 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
423 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
424 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
425 |
+
|
426 |
+
for iP in range(self.np):
|
427 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
428 |
+
p2 = numpy.dot(R, p1)
|
429 |
+
self.X[iP] = p2[0]
|
430 |
+
self.Y[iP] = p2[1]
|
431 |
+
self.Z[iP] = p2[2]
|
432 |
+
|
433 |
+
# Translate back to original position
|
434 |
+
|
435 |
+
self.X += a1[0]
|
436 |
+
self.Y += a1[1]
|
437 |
+
self.Z += a1[2]
|
438 |
+
|
439 |
+
def makeCoin(self):
|
440 |
+
coin = numpy.zeros((3, 4, self.nf))
|
441 |
+
for iF in range(self.nf):
|
442 |
+
for iC in range(4):
|
443 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
444 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
445 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
446 |
+
return coin
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
class hemicylinder:
|
452 |
+
def __init__(self, diameter, height, cCor):
|
453 |
+
self.diameter = diameter
|
454 |
+
self.height = height
|
455 |
+
self.xC = cCor[0]
|
456 |
+
self.yC = cCor[1]
|
457 |
+
self.zC = cCor[2]
|
458 |
+
self.name = 'hemicylinder'
|
459 |
+
self.panelize()
|
460 |
+
self.translate(self.xC, self.yC, self.zC)
|
461 |
+
|
462 |
+
def panelize(self):
|
463 |
+
Ntheta = 18
|
464 |
+
Nz = 3
|
465 |
+
theta = [xx * numpy.pi / (Ntheta - 1) - numpy.pi / 2.0 for xx in range(Ntheta)]
|
466 |
+
self.nf = 0
|
467 |
+
self.np = 0
|
468 |
+
r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
|
469 |
+
z = [self.height / 2.0, self.height / 2.0, -self.height / 2.0, -self.height / 2.0]
|
470 |
+
self.X = []
|
471 |
+
self.Y = []
|
472 |
+
self.Z = []
|
473 |
+
self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
|
474 |
+
n = len(r)
|
475 |
+
|
476 |
+
for iT in range(Ntheta):
|
477 |
+
for iN in range(n):
|
478 |
+
self.Z.append(-r[iN] * numpy.cos(theta[iT]))
|
479 |
+
self.X.append(r[iN] * numpy.sin(theta[iT]))
|
480 |
+
self.Y.append(z[iN])
|
481 |
+
self.np += 1
|
482 |
+
|
483 |
+
iP = 0
|
484 |
+
for iN in range(1, n):
|
485 |
+
for iT in range(1, Ntheta):
|
486 |
+
self.P[iP, 3] = iN + n * (iT - 1)
|
487 |
+
self.P[iP, 2] = iN + 1 + n * (iT - 1)
|
488 |
+
self.P[iP, 1] = iN + 1 + n * iT
|
489 |
+
self.P[iP, 0] = iN + n * iT
|
490 |
+
self.nf += 1
|
491 |
+
iP += 1
|
492 |
+
|
493 |
+
self.X = numpy.array(self.X)
|
494 |
+
self.Y = numpy.array(self.Y)
|
495 |
+
self.Z = numpy.array(self.Z)
|
496 |
+
# Define triangles for plotting
|
497 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
498 |
+
iT = 0
|
499 |
+
for iTr in range(self.nf):
|
500 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
501 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
502 |
+
iT += 2
|
503 |
+
|
504 |
+
def translate(self, xT, yT, zT):
|
505 |
+
self.X += xT
|
506 |
+
self.Y += yT
|
507 |
+
self.Z += zT
|
508 |
+
|
509 |
+
def rotate(self, a1, a2, theta):
|
510 |
+
R = numpy.zeros([3, 3])
|
511 |
+
# Normal vector through origin
|
512 |
+
u = a2[0] - a1[0]
|
513 |
+
v = a2[1] - a1[1]
|
514 |
+
w = a2[2] - a1[2]
|
515 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
516 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
517 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
518 |
+
# Translate mesh so that rotation axis starts from the origin
|
519 |
+
self.X -= a1[0]
|
520 |
+
self.Y -= a1[1]
|
521 |
+
self.Z -= a1[2]
|
522 |
+
|
523 |
+
# Rotation matrix
|
524 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
525 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
526 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
527 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
528 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
529 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
530 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
531 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
532 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
533 |
+
|
534 |
+
for iP in range(self.np):
|
535 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
536 |
+
p2 = numpy.dot(R, p1)
|
537 |
+
self.X[iP] = p2[0]
|
538 |
+
self.Y[iP] = p2[1]
|
539 |
+
self.Z[iP] = p2[2]
|
540 |
+
|
541 |
+
# Translate back to original position
|
542 |
+
|
543 |
+
self.X += a1[0]
|
544 |
+
self.Y += a1[1]
|
545 |
+
self.Z += a1[2]
|
546 |
+
|
547 |
+
def makeCoin(self):
|
548 |
+
coin = numpy.zeros((3, 4, self.nf))
|
549 |
+
for iF in range(self.nf):
|
550 |
+
for iC in range(4):
|
551 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
552 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
553 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
554 |
+
return coin
|
555 |
+
|
556 |
+
|
557 |
+
class sphere:
|
558 |
+
def __init__(self, diameter, cCor):
|
559 |
+
self.diameter = diameter
|
560 |
+
self.xC = cCor[0]
|
561 |
+
self.yC = cCor[1]
|
562 |
+
self.zC = cCor[2]
|
563 |
+
self.name = 'sphere'
|
564 |
+
self.panelize()
|
565 |
+
self.translate(self.xC, self.yC, self.zC)
|
566 |
+
|
567 |
+
def panelize(self):
|
568 |
+
Ntheta = 18
|
569 |
+
Nthetad2 = int(Ntheta / 2)
|
570 |
+
Nz = 3
|
571 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
572 |
+
phi = [xx * numpy.pi / (Ntheta / 2 - 1) for xx in range(Nthetad2)]
|
573 |
+
self.nf = 0
|
574 |
+
self.np = 0
|
575 |
+
r = self.diameter / 2.0
|
576 |
+
self.X = []
|
577 |
+
self.Y = []
|
578 |
+
self.Z = []
|
579 |
+
self.P = numpy.zeros([(Ntheta - 1) * (Nthetad2 - 1), 4], dtype=int)
|
580 |
+
|
581 |
+
for iT in range(Nthetad2):
|
582 |
+
for iTT in range(Ntheta):
|
583 |
+
self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
|
584 |
+
self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
|
585 |
+
self.Z.append(r * numpy.cos(phi[iT]))
|
586 |
+
self.np += 1
|
587 |
+
|
588 |
+
iP = 0
|
589 |
+
for iN in range(1, Ntheta):
|
590 |
+
for iT in range(1, Nthetad2):
|
591 |
+
self.P[iP, 3] = iN + Ntheta * (iT - 1)
|
592 |
+
self.P[iP, 2] = iN + 1 + Ntheta * (iT - 1)
|
593 |
+
self.P[iP, 1] = iN + 1 + Ntheta * iT
|
594 |
+
self.P[iP, 0] = iN + Ntheta * iT
|
595 |
+
self.nf += 1
|
596 |
+
iP += 1
|
597 |
+
self.X = numpy.array(self.X)
|
598 |
+
self.Y = numpy.array(self.Y)
|
599 |
+
self.Z = numpy.array(self.Z)
|
600 |
+
# Define triangles for plotting
|
601 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
602 |
+
iT = 0
|
603 |
+
for iTr in range(self.nf):
|
604 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
605 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
606 |
+
iT += 2
|
607 |
+
|
608 |
+
def translate(self, xT, yT, zT):
|
609 |
+
self.X += xT
|
610 |
+
self.Y += yT
|
611 |
+
self.Z += zT
|
612 |
+
|
613 |
+
def rotate(self, a1, a2, theta):
|
614 |
+
R = numpy.zeros([3, 3])
|
615 |
+
# Normal vector through origin
|
616 |
+
u = a2[0] - a1[0]
|
617 |
+
v = a2[1] - a1[1]
|
618 |
+
w = a2[2] - a1[2]
|
619 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
620 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
621 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
622 |
+
# Translate mesh so that rotation axis starts from the origin
|
623 |
+
self.X -= a1[0]
|
624 |
+
self.Y -= a1[1]
|
625 |
+
self.Z -= a1[2]
|
626 |
+
|
627 |
+
# Rotation matrix
|
628 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
629 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
630 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
631 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
632 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
633 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
634 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
635 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
636 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
637 |
+
|
638 |
+
for iP in range(self.np):
|
639 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
640 |
+
p2 = numpy.dot(R, p1)
|
641 |
+
self.X[iP] = p2[0]
|
642 |
+
self.Y[iP] = p2[1]
|
643 |
+
self.Z[iP] = p2[2]
|
644 |
+
|
645 |
+
# Translate back to original position
|
646 |
+
|
647 |
+
self.X += a1[0]
|
648 |
+
self.Y += a1[1]
|
649 |
+
self.Z += a1[2]
|
650 |
+
|
651 |
+
def makeCoin(self):
|
652 |
+
coin = numpy.zeros((3, 4, self.nf))
|
653 |
+
for iF in range(self.nf):
|
654 |
+
for iC in range(4):
|
655 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
656 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
657 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
658 |
+
return coin
|
659 |
+
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
|
664 |
+
class hemisphere:
|
665 |
+
def __init__(self, diameter, cCor):
|
666 |
+
self.diameter = diameter
|
667 |
+
self.xC = cCor[0]
|
668 |
+
self.yC = cCor[1]
|
669 |
+
self.zC = cCor[2]
|
670 |
+
self.name = 'hemisphere'
|
671 |
+
self.panelize()
|
672 |
+
self.translate(self.xC, self.yC, self.zC)
|
673 |
+
|
674 |
+
def panelize(self):
|
675 |
+
Ntheta = 18
|
676 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
677 |
+
phi = [xx * numpy.pi / 2.0 / (Ntheta / 2 - 1) for xx in range(Ntheta / 2)]
|
678 |
+
self.nf = 0
|
679 |
+
self.np = 0
|
680 |
+
r = self.diameter / 2.0
|
681 |
+
self.X = []
|
682 |
+
self.Y = []
|
683 |
+
self.Z = []
|
684 |
+
self.P = numpy.zeros([(Ntheta - 1) * (Ntheta / 2 - 1), 4], dtype=int)
|
685 |
+
|
686 |
+
for iT in range(Ntheta / 2):
|
687 |
+
for iTT in range(Ntheta):
|
688 |
+
self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
|
689 |
+
self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
|
690 |
+
self.Z.append(-r * numpy.cos(phi[iT]))
|
691 |
+
self.np += 1
|
692 |
+
|
693 |
+
iP = 0
|
694 |
+
for iN in range(1, Ntheta):
|
695 |
+
for iT in range(1, Ntheta / 2):
|
696 |
+
self.P[iP, 0] = iN + Ntheta * (iT - 1)
|
697 |
+
self.P[iP, 1] = iN + 1 + Ntheta * (iT - 1)
|
698 |
+
self.P[iP, 2] = iN + 1 + Ntheta * iT
|
699 |
+
self.P[iP, 3] = iN + Ntheta * iT
|
700 |
+
self.nf += 1
|
701 |
+
iP += 1
|
702 |
+
|
703 |
+
self.X = numpy.array(self.X)
|
704 |
+
self.Y = numpy.array(self.Y)
|
705 |
+
self.Z = numpy.array(self.Z)
|
706 |
+
# Define triangles for plotting
|
707 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
708 |
+
iT = 0
|
709 |
+
for iTr in range(self.nf):
|
710 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
711 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
712 |
+
iT += 2
|
713 |
+
|
714 |
+
def translate(self, xT, yT, zT):
|
715 |
+
self.X += xT
|
716 |
+
self.Y += yT
|
717 |
+
self.Z += zT
|
718 |
+
|
719 |
+
def rotate(self, a1, a2, theta):
|
720 |
+
R = numpy.zeros([3, 3])
|
721 |
+
# Normal vector through origin
|
722 |
+
u = a2[0] - a1[0]
|
723 |
+
v = a2[1] - a1[1]
|
724 |
+
w = a2[2] - a1[2]
|
725 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
726 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
727 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
728 |
+
# Translate mesh so that rotation axis starts from the origin
|
729 |
+
self.X -= a1[0]
|
730 |
+
self.Y -= a1[1]
|
731 |
+
self.Z -= a1[2]
|
732 |
+
|
733 |
+
# Rotation matrix
|
734 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
735 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
736 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
737 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
738 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
739 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
740 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
741 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
742 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
743 |
+
|
744 |
+
for iP in range(self.np):
|
745 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
746 |
+
p2 = numpy.dot(R, p1)
|
747 |
+
self.X[iP] = p2[0]
|
748 |
+
self.Y[iP] = p2[1]
|
749 |
+
self.Z[iP] = p2[2]
|
750 |
+
|
751 |
+
# Translate back to original position
|
752 |
+
|
753 |
+
self.X += a1[0]
|
754 |
+
self.Y += a1[1]
|
755 |
+
self.Z += a1[2]
|
756 |
+
|
757 |
+
def makeCoin(self):
|
758 |
+
coin = numpy.zeros((3, 4, self.nf))
|
759 |
+
for iF in range(self.nf):
|
760 |
+
for iC in range(4):
|
761 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
762 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
763 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
764 |
+
return coin
|
765 |
+
|
766 |
+
|
767 |
+
|
768 |
+
|
769 |
+
class pyramid:
|
770 |
+
def __init__(self, length, width, height, cCor):
|
771 |
+
self.length = length
|
772 |
+
self.width = width
|
773 |
+
self.height = height
|
774 |
+
self.xC = cCor[0]
|
775 |
+
self.yC = cCor[1]
|
776 |
+
self.zC = cCor[2]
|
777 |
+
self.name = 'pyramid'
|
778 |
+
self.panelize()
|
779 |
+
self.translate(self.xC, self.yC, self.zC)
|
780 |
+
|
781 |
+
def panelize(self):
|
782 |
+
self.nf = 6
|
783 |
+
self.np = 8
|
784 |
+
self.X = numpy.array(
|
785 |
+
[0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
|
786 |
+
self.Y = numpy.array(
|
787 |
+
[0.0, 0.0, self.width / 2.0, self.width / 2.0, 0.0, 0.0, -self.width / 2.0, -self.width / 2.0])
|
788 |
+
self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
|
789 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
790 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
791 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
792 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
793 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
794 |
+
self.P[4, :] = numpy.array([5, 6, 5, 1])
|
795 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
796 |
+
# Define triangles for plotting
|
797 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
798 |
+
iT = 0
|
799 |
+
for iTr in range(self.nf):
|
800 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
801 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
802 |
+
iT += 2
|
803 |
+
|
804 |
+
def translate(self, xT, yT, zT):
|
805 |
+
self.X += xT
|
806 |
+
self.Y += yT
|
807 |
+
self.Z += zT
|
808 |
+
|
809 |
+
def rotate(self, a1, a2, theta):
|
810 |
+
R = numpy.zeros([3, 3])
|
811 |
+
# Normal vector through origin
|
812 |
+
u = a2[0] - a1[0]
|
813 |
+
v = a2[1] - a1[1]
|
814 |
+
w = a2[2] - a1[2]
|
815 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
816 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
817 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
818 |
+
# Translate mesh so that rotation axis starts from the origin
|
819 |
+
self.X -= a1[0]
|
820 |
+
self.Y -= a1[1]
|
821 |
+
self.Z -= a1[2]
|
822 |
+
|
823 |
+
# Rotation matrix
|
824 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
825 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
826 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
827 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
828 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
829 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
830 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
831 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
832 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
833 |
+
|
834 |
+
for iP in range(self.np):
|
835 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
836 |
+
p2 = numpy.dot(R, p1)
|
837 |
+
self.X[iP] = p2[0]
|
838 |
+
self.Y[iP] = p2[1]
|
839 |
+
self.Z[iP] = p2[2]
|
840 |
+
|
841 |
+
# Translate back to original position
|
842 |
+
|
843 |
+
self.X += a1[0]
|
844 |
+
self.Y += a1[1]
|
845 |
+
self.Z += a1[2]
|
846 |
+
|
847 |
+
def makeCoin(self):
|
848 |
+
coin = numpy.zeros((3, 4, self.nf))
|
849 |
+
for iF in range(self.nf):
|
850 |
+
for iC in range(4):
|
851 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
852 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
853 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
854 |
+
return coin
|
855 |
+
|
856 |
+
|
857 |
+
|
858 |
+
|
859 |
+
|
860 |
+
class wedge:
|
861 |
+
def __init__(self, length, width, height, cCor):
|
862 |
+
self.length = length
|
863 |
+
self.width = width
|
864 |
+
self.height = height
|
865 |
+
self.xC = cCor[0]
|
866 |
+
self.yC = cCor[1]
|
867 |
+
self.zC = cCor[2]
|
868 |
+
self.name = 'wedge'
|
869 |
+
self.panelize()
|
870 |
+
self.translate(self.xC, self.yC, self.zC)
|
871 |
+
|
872 |
+
def panelize(self):
|
873 |
+
self.nf = 6
|
874 |
+
self.np = 8
|
875 |
+
self.X = numpy.array(
|
876 |
+
[0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
|
877 |
+
self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
|
878 |
+
-self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
|
879 |
+
self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
|
880 |
+
self.P = numpy.zeros([6, 4], dtype=int)
|
881 |
+
self.P[0, :] = numpy.array([3, 4, 2, 1])
|
882 |
+
self.P[1, :] = numpy.array([4, 8, 6, 2])
|
883 |
+
self.P[2, :] = numpy.array([8, 7, 5, 6])
|
884 |
+
self.P[3, :] = numpy.array([7, 3, 1, 5])
|
885 |
+
self.P[4, :] = numpy.array([2, 6, 5, 1])
|
886 |
+
self.P[5, :] = numpy.array([8, 4, 3, 7])
|
887 |
+
# Define triangles for plotting
|
888 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
889 |
+
iT = 0
|
890 |
+
for iTr in range(self.nf):
|
891 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
892 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
893 |
+
iT += 2
|
894 |
+
|
895 |
+
def translate(self, xT, yT, zT):
|
896 |
+
self.X += xT
|
897 |
+
self.Y += yT
|
898 |
+
self.Z += zT
|
899 |
+
|
900 |
+
def rotate(self, a1, a2, theta):
|
901 |
+
R = numpy.zeros([3, 3])
|
902 |
+
# Normal vector through origin
|
903 |
+
u = a2[0] - a1[0]
|
904 |
+
v = a2[1] - a1[1]
|
905 |
+
w = a2[2] - a1[2]
|
906 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
907 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
908 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
909 |
+
# Translate mesh so that rotation axis starts from the origin
|
910 |
+
self.X -= a1[0]
|
911 |
+
self.Y -= a1[1]
|
912 |
+
self.Z -= a1[2]
|
913 |
+
|
914 |
+
# Rotation matrix
|
915 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
916 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
917 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
918 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
919 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
920 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
921 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
922 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
923 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
924 |
+
|
925 |
+
for iP in range(self.np):
|
926 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
927 |
+
p2 = numpy.dot(R, p1)
|
928 |
+
self.X[iP] = p2[0]
|
929 |
+
self.Y[iP] = p2[1]
|
930 |
+
self.Z[iP] = p2[2]
|
931 |
+
|
932 |
+
# Translate back to original position
|
933 |
+
|
934 |
+
self.X += a1[0]
|
935 |
+
self.Y += a1[1]
|
936 |
+
self.Z += a1[2]
|
937 |
+
|
938 |
+
def makeCoin(self):
|
939 |
+
coin = numpy.zeros((3, 4, self.nf))
|
940 |
+
for iF in range(self.nf):
|
941 |
+
for iC in range(4):
|
942 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
943 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
944 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
945 |
+
return coin
|
946 |
+
|
947 |
+
|
948 |
+
|
949 |
+
|
950 |
+
|
951 |
+
class torus:
|
952 |
+
def __init__(self, diamOut, diamIn, cCor):
|
953 |
+
self.diamOut = diamOut
|
954 |
+
self.diamIn = diamIn
|
955 |
+
self.xC = cCor[0]
|
956 |
+
self.yC = cCor[1]
|
957 |
+
self.zC = cCor[2]
|
958 |
+
self.name = 'torus'
|
959 |
+
self.panelize()
|
960 |
+
self.translate(self.xC, self.yC, self.zC)
|
961 |
+
|
962 |
+
def panelize(self):
|
963 |
+
Ntheta = 18
|
964 |
+
Nphi = 18
|
965 |
+
theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
|
966 |
+
phi = [xx * 2 * numpy.pi / (Nphi - 1) for xx in range(Nphi)]
|
967 |
+
self.nf = 0
|
968 |
+
self.np = 0
|
969 |
+
self.X = []
|
970 |
+
self.Y = []
|
971 |
+
self.Z = []
|
972 |
+
R = self.diamOut / 2.0
|
973 |
+
r = self.diamIn / 2.0
|
974 |
+
|
975 |
+
for iT in range(Ntheta):
|
976 |
+
for iP in range(Nphi):
|
977 |
+
self.X.append((R + r * numpy.cos(theta[iT])) * numpy.cos(phi[iP]))
|
978 |
+
self.Y.append((R + r * numpy.cos(theta[iT])) * numpy.sin(phi[iP]))
|
979 |
+
self.Z.append(r * numpy.sin(theta[iT]))
|
980 |
+
self.np += 1
|
981 |
+
|
982 |
+
self.nf = (Ntheta - 1) * (Nphi - 1)
|
983 |
+
self.P = numpy.zeros([self.nf, 4], dtype=int)
|
984 |
+
iPan = 0
|
985 |
+
for iT in range(Ntheta - 1):
|
986 |
+
for iP in range(Nphi - 1):
|
987 |
+
self.P[iPan, 0] = iP + iT * Nphi + 1
|
988 |
+
self.P[iPan, 1] = iP + 1 + iT * Nphi + 1
|
989 |
+
self.P[iPan, 2] = iP + 1 + Ntheta + iT * Nphi + 1
|
990 |
+
self.P[iPan, 3] = iP + Ntheta + iT * Nphi + 1
|
991 |
+
iPan += 1
|
992 |
+
|
993 |
+
self.X = numpy.array(self.X)
|
994 |
+
self.Y = numpy.array(self.Y)
|
995 |
+
self.Z = numpy.array(self.Z)
|
996 |
+
# Define triangles for plotting
|
997 |
+
self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
|
998 |
+
iT = 0
|
999 |
+
for iTr in range(self.nf):
|
1000 |
+
self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
|
1001 |
+
self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
|
1002 |
+
iT += 2
|
1003 |
+
|
1004 |
+
def translate(self, xT, yT, zT):
|
1005 |
+
self.X += xT
|
1006 |
+
self.Y += yT
|
1007 |
+
self.Z += zT
|
1008 |
+
|
1009 |
+
def rotate(self, a1, a2, theta):
|
1010 |
+
R = numpy.zeros([3, 3])
|
1011 |
+
# Normal vector through origin
|
1012 |
+
u = a2[0] - a1[0]
|
1013 |
+
v = a2[1] - a1[1]
|
1014 |
+
w = a2[2] - a1[2]
|
1015 |
+
u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
1016 |
+
v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
1017 |
+
w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
|
1018 |
+
# Translate mesh so that rotation axis starts from the origin
|
1019 |
+
self.X -= a1[0]
|
1020 |
+
self.Y -= a1[1]
|
1021 |
+
self.Z -= a1[2]
|
1022 |
+
|
1023 |
+
# Rotation matrix
|
1024 |
+
R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
|
1025 |
+
R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
|
1026 |
+
R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
|
1027 |
+
R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
|
1028 |
+
R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
|
1029 |
+
R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
|
1030 |
+
R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
|
1031 |
+
R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
|
1032 |
+
R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)
|
1033 |
+
|
1034 |
+
for iP in range(self.np):
|
1035 |
+
p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
|
1036 |
+
p2 = numpy.dot(R, p1)
|
1037 |
+
self.X[iP] = p2[0]
|
1038 |
+
self.Y[iP] = p2[1]
|
1039 |
+
self.Z[iP] = p2[2]
|
1040 |
+
|
1041 |
+
# Translate back to original position
|
1042 |
+
|
1043 |
+
self.X += a1[0]
|
1044 |
+
self.Y += a1[1]
|
1045 |
+
self.Z += a1[2]
|
1046 |
+
|
1047 |
+
def makeCoin(self):
|
1048 |
+
coin = numpy.zeros((3, 4, self.nf))
|
1049 |
+
for iF in range(self.nf):
|
1050 |
+
for iC in range(4):
|
1051 |
+
coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
|
1052 |
+
coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
|
1053 |
+
coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
|
1054 |
+
return coin
|
1055 |
+
|
1056 |
+
|
1057 |
+
|
1058 |
+
def make_voxels(shape, length, height, width, diameter):
|
1059 |
+
pos = [0, 0, 0]
|
1060 |
+
if shape == "box":
|
1061 |
+
mesh = box(length, width, height, pos)
|
1062 |
+
elif shape == "cone":
|
1063 |
+
mesh = cone(diameter, height, pos)
|
1064 |
+
elif shape == "cylinder":
|
1065 |
+
mesh = cylinder(diameter, height, pos)
|
1066 |
+
elif shape == "sphere":
|
1067 |
+
mesh = sphere(diameter, pos)
|
1068 |
+
elif shape == "wedge":
|
1069 |
+
mesh = wedge(length, width, height, pos)
|
1070 |
+
|
1071 |
+
hull_points = numpy.array([mesh.X.tolist(), mesh.Y.tolist(), mesh.Z.tolist()]).T
|
1072 |
+
|
1073 |
+
# Set up test points
|
1074 |
+
G = 32
|
1075 |
+
ex = 5 - 5 / G
|
1076 |
+
x, y, z = numpy.meshgrid(numpy.linspace(-ex, ex, G),
|
1077 |
+
numpy.linspace(-ex, ex, G),
|
1078 |
+
numpy.linspace(-(9.5 - 5 / G), 0.5 - 5 / G, G))
|
1079 |
+
test_points = numpy.vstack((x.ravel(), y.ravel(), z.ravel())).T
|
1080 |
+
|
1081 |
+
hull = scipy.spatial.Delaunay(hull_points)
|
1082 |
+
within = hull.find_simplex(test_points) >= 0
|
1083 |
+
|
1084 |
+
return plotly_fig(within*1.0)
|
1085 |
+
|
1086 |
# This function loads a fuckton of data
|
1087 |
def load_data():
|
1088 |
# Open all the files we downloaded at the beginning and take out hte good bits
|
|
|
1106 |
|
1107 |
# Return good bits to user
|
1108 |
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
|
|
|
|
|
|
|
1109 |
|
1110 |
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
|
1111 |
|