fffiloni commited on
Commit
1c8df7b
·
verified ·
1 Parent(s): aa2be82

Update injection_main.py

Browse files
Files changed (1) hide show
  1. injection_main.py +10 -110
injection_main.py CHANGED
@@ -473,10 +473,7 @@ def style_image_with_inversion(
473
 
474
  if __name__ == "__main__":
475
 
476
- # Load a pipeline
477
- pipe = StableDiffusionPipeline.from_pretrained(
478
- "stabilityai/stable-diffusion-2-1-base"
479
- ).to(device)
480
 
481
  # pipe = DiffusionPipeline.from_pretrained(
482
  # # "playgroundai/playground-v2-1024px-aesthetic",
@@ -487,9 +484,6 @@ if __name__ == "__main__":
487
  # )
488
  # pipe.to("cuda")
489
 
490
- # Set up a DDIM scheduler
491
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
492
-
493
  parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf")
494
  parser.add_argument(
495
  "--config", type=str, default="config.yaml", help="Path to the config file"
@@ -517,113 +511,19 @@ if __name__ == "__main__":
517
  # mode = "dataset"
518
  out_name = ["content_delegation", "style_delegation", "style_out"]
519
 
520
- if mode == "dataset":
521
- cfg = OmegaConf.load(config_dir)
522
-
523
- base_output_path = cfg.out_path
524
- if not os.path.exists(cfg.out_path):
525
- os.makedirs(cfg.out_path)
526
- base_output_path = os.path.join(base_output_path, cfg.exp_name)
527
-
528
- experiment_output_path = utils.exp_utils.make_unique_experiment_path(
529
- base_output_path
530
- )
531
-
532
- # Save the experiment configuration
533
- config_file_path = os.path.join(experiment_output_path, "config.yaml")
534
- omegaconf.OmegaConf.save(cfg, config_file_path)
535
-
536
- # Seed all
537
-
538
- annotation = json.load(open(cfg.annotation))
539
- with open(os.path.join(experiment_output_path, "annotation.json"), "w") as f:
540
- json.dump(annotation, f)
541
- for i, entry in enumerate(annotation):
542
- utils.exp_utils.seed_all(cfg.seed)
543
- image_path = entry["image_path"]
544
- src_prompt = entry["source_prompt"]
545
- tgt_prompt = entry["target_prompt"]
546
- resolution = 512 if isinstance(pipe, StableDiffusionXLPipeline) else 512
547
- input_image = utils.exp_utils.get_processed_image(
548
- image_path, device, resolution
549
- )
550
-
551
- prompt_in = [
552
- src_prompt, # reconstruction
553
- tgt_prompt, # uncontrolled style
554
- "", # controlled style
555
- ]
556
-
557
- imgs = style_image_with_inversion(
558
- pipe,
559
- input_image,
560
- src_prompt,
561
- style_prompt=prompt_in,
562
- num_steps=cfg.num_steps,
563
- start_step=cfg.start_step,
564
- guidance_scale=cfg.style_cfg_scale,
565
- disentangle=cfg.disentangle,
566
- resnet_mode=cfg.resnet_mode,
567
- share_attn=cfg.share_attn,
568
- share_cross_attn=cfg.share_cross_attn,
569
- share_resnet_layers=cfg.share_resnet_layers,
570
- share_attn_layers=cfg.share_attn_layers,
571
- share_key=cfg.share_key,
572
- share_query=cfg.share_query,
573
- share_value=cfg.share_value,
574
- use_content_anchor=cfg.use_content_anchor,
575
- use_adain=cfg.use_adain,
576
- output_dir=experiment_output_path,
577
- )
578
-
579
- for j, img in enumerate(imgs):
580
- img.save(f"{experiment_output_path}/out_{i}_{out_name[j]}.png")
581
- print(
582
- f"Image saved as {experiment_output_path}/out_{i}_{out_name[j]}.png"
583
- )
584
- elif mode == "cli":
585
- cfg = OmegaConf.load(config_dir)
586
- utils.exp_utils.seed_all(cfg.seed)
587
- image = utils.exp_utils.get_processed_image(args.image_dir, device, 512)
588
- tgt_prompt = args.prompt
589
- src_prompt = ""
590
- prompt_in = [
591
- "", # reconstruction
592
- tgt_prompt, # uncontrolled style
593
- "", # controlled style
594
- ]
595
- out_dir = "./out"
596
- os.makedirs(out_dir, exist_ok=True)
597
- imgs = style_image_with_inversion(
598
- pipe,
599
- image,
600
- src_prompt,
601
- style_prompt=prompt_in,
602
- num_steps=cfg.num_steps,
603
- start_step=cfg.start_step,
604
- guidance_scale=cfg.style_cfg_scale,
605
- disentangle=cfg.disentangle,
606
- resnet_mode=cfg.resnet_mode,
607
- share_attn=cfg.share_attn,
608
- share_cross_attn=cfg.share_cross_attn,
609
- share_resnet_layers=cfg.share_resnet_layers,
610
- share_attn_layers=cfg.share_attn_layers,
611
- share_key=cfg.share_key,
612
- share_query=cfg.share_query,
613
- share_value=cfg.share_value,
614
- use_content_anchor=cfg.use_content_anchor,
615
- use_adain=cfg.use_adain,
616
- output_dir=out_dir,
617
- )
618
- image_base_name = os.path.basename(args.image_dir).split(".")[0]
619
- for j, img in enumerate(imgs):
620
- img.save(f"{out_dir}/{image_base_name}_out_{out_name[j]}.png")
621
- print(f"Image saved as {out_dir}/{image_base_name}_out_{out_name[j]}.png")
622
- elif mode == "app":
623
  # gradio
624
  import gradio as gr
625
  import spaces
626
 
 
 
 
 
 
 
 
 
627
  @spaces.GPU()
628
  def style_transfer_app(
629
  prompt,
 
473
 
474
  if __name__ == "__main__":
475
 
476
+
 
 
 
477
 
478
  # pipe = DiffusionPipeline.from_pretrained(
479
  # # "playgroundai/playground-v2-1024px-aesthetic",
 
484
  # )
485
  # pipe.to("cuda")
486
 
 
 
 
487
  parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf")
488
  parser.add_argument(
489
  "--config", type=str, default="config.yaml", help="Path to the config file"
 
511
  # mode = "dataset"
512
  out_name = ["content_delegation", "style_delegation", "style_out"]
513
 
514
+ if mode == "app":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515
  # gradio
516
  import gradio as gr
517
  import spaces
518
 
519
+ # Load a pipeline
520
+ pipe = StableDiffusionPipeline.from_pretrained(
521
+ "stabilityai/stable-diffusion-2-1-base"
522
+ ).to(device)
523
+
524
+ # Set up a DDIM scheduler
525
+ pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
526
+
527
  @spaces.GPU()
528
  def style_transfer_app(
529
  prompt,