Spaces:
Runtime error
Runtime error
6Morpheus6
commited on
download option
Browse filesNew UI:
- download element
- output folder
- max image element height (no more scrolling needed)
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from gradio_imageslider import ImageSlider
|
@@ -21,6 +23,14 @@ aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2", device=DEVICE)
|
|
21 |
# Restore original torch.load
|
22 |
torch.load = original_load
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def process_image(input_image):
|
25 |
if input_image is None:
|
26 |
raise gr.Error("Please provide an image to upscale.")
|
@@ -34,7 +44,12 @@ def process_image(input_image):
|
|
34 |
# Convert result to numpy array if it's not already
|
35 |
result_array = np.array(upscaled_image)
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
@spaces.GPU
|
40 |
def process_image_on_gpu(pil_image):
|
@@ -48,21 +63,28 @@ title = """<h1 align="center">AuraSR-v2 - An open reproduction of the GigaGAN Up
|
|
48 |
</center></p>
|
49 |
"""
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
gr.HTML(title)
|
54 |
|
55 |
with gr.Row():
|
56 |
with gr.Column(scale=1):
|
57 |
-
input_image = gr.Image(label="Input Image", type="numpy")
|
58 |
process_btn = gr.Button("Upscale Image")
|
59 |
with gr.Column(scale=1):
|
60 |
-
output_slider = ImageSlider(label="Before / After", type="numpy")
|
|
|
61 |
|
62 |
process_btn.click(
|
63 |
fn=process_image,
|
64 |
inputs=[input_image],
|
65 |
-
outputs=output_slider
|
66 |
)
|
67 |
|
68 |
# Add examples
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
import spaces
|
4 |
import gradio as gr
|
5 |
from gradio_imageslider import ImageSlider
|
|
|
23 |
# Restore original torch.load
|
24 |
torch.load = original_load
|
25 |
|
26 |
+
# Create output folder if not exists
|
27 |
+
output_folder = '../outputs'
|
28 |
+
os.makedirs(output_folder, exist_ok=True)
|
29 |
+
|
30 |
+
def generate_output_filename():
|
31 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
32 |
+
return f"upscaled_{timestamp}.png"
|
33 |
+
|
34 |
def process_image(input_image):
|
35 |
if input_image is None:
|
36 |
raise gr.Error("Please provide an image to upscale.")
|
|
|
44 |
# Convert result to numpy array if it's not already
|
45 |
result_array = np.array(upscaled_image)
|
46 |
|
47 |
+
# Save result as PNG
|
48 |
+
output_filename = generate_output_filename()
|
49 |
+
output_path = os.path.join(output_folder, output_filename)
|
50 |
+
upscaled_image.save(output_path, format="PNG")
|
51 |
+
|
52 |
+
return [input_image, result_array], output_path
|
53 |
|
54 |
@spaces.GPU
|
55 |
def process_image_on_gpu(pil_image):
|
|
|
63 |
</center></p>
|
64 |
"""
|
65 |
|
66 |
+
css = """
|
67 |
+
.img { max-height: 80vh !Important }
|
68 |
+
#slider-container { overflow: hidden; display: flex; justify-content: center }
|
69 |
+
#row-height { height: 65px !important }
|
70 |
+
"""
|
71 |
+
|
72 |
+
with gr.Blocks(css=css) as demo:
|
73 |
|
74 |
gr.HTML(title)
|
75 |
|
76 |
with gr.Row():
|
77 |
with gr.Column(scale=1):
|
78 |
+
input_image = gr.Image(label="Input Image", type="numpy", elem_classes="img")
|
79 |
process_btn = gr.Button("Upscale Image")
|
80 |
with gr.Column(scale=1):
|
81 |
+
output_slider = ImageSlider(label="Before / After", type="numpy", elem_classes="img", elem_id="slider-container")
|
82 |
+
download_btn = gr.File(label="Download Image", elem_id="row-height")
|
83 |
|
84 |
process_btn.click(
|
85 |
fn=process_image,
|
86 |
inputs=[input_image],
|
87 |
+
outputs=[output_slider, download_btn]
|
88 |
)
|
89 |
|
90 |
# Add examples
|