Spaces:
Runtime error
Runtime error
import math | |
import random | |
import os | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import PIL | |
import gc | |
import tempfile | |
#import spaces | |
import torch | |
from diffusers import LCMScheduler | |
from diffusers.models import ControlNetModel | |
from diffusers.utils import load_image | |
from insightface.app import FaceAnalysis | |
from PIL import Image | |
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline | |
from style_template import styles | |
# global variable | |
MAX_SEED = np.iinfo(np.int32).max | |
#device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
torch_dtype = torch.float32 | |
elif torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "Watercolor" | |
# download checkpoints | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
local_dir="./checkpoints", | |
) | |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints") | |
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints") | |
# Load face encoder | |
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"]) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
# Path to InstantID models | |
face_adapter = "./checkpoints/ip-adapter.bin" | |
controlnet_path = "./checkpoints/ControlNetModel" | |
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors" | |
# Load pipeline | |
#controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype) | |
base_model_path = "wangqixun/YamerMIX_v8" | |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
#torch_dtype=torch.float16, | |
torch_dtype=torch_dtype, | |
safety_checker=None, | |
feature_extractor=None, | |
) | |
num_inference_steps = 30 | |
guidance_scale = 5 | |
#pipe.cuda() | |
if os.environ.get("MODE") == "Default": | |
print("Default") | |
num_inference_steps = 30 | |
guidance_scale = 5 | |
# LCM | |
if os.environ.get("MODE") == "LCM": | |
print("LCM") | |
num_inference_steps = 4 | |
guidance_scale = 2 | |
pipe.load_lora_weights(lcm_lora_path) | |
pipe.fuse_lora() | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
print(f"default: num_inference_steps={num_inference_steps}, guidance_scale={guidance_scale}") | |
if device == 'mps': | |
pipe.to("mps", torch_dtype) | |
pipe.enable_attention_slicing() | |
elif device == 'cuda': | |
pipe.cuda() | |
pipe.load_ip_adapter_instantid(face_adapter) | |
#pipe.image_proj_model.to("cuda") | |
#pipe.unet.to("cuda") | |
if device == 'mps' or device == 'cuda': | |
pipe.image_proj_model.to(device) | |
pipe.unet.to(device) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def remove_tips(): | |
return gr.update(visible=False) | |
def get_example(): | |
case = [ | |
[ | |
"./examples/yann-lecun_resize.jpg", | |
"a man", | |
"Snow", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
[ | |
"./examples/musk_resize.jpeg", | |
"a man", | |
"Mars", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
[ | |
"./examples/sam_resize.png", | |
"a man", | |
"Jungle", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", | |
], | |
[ | |
"./examples/schmidhuber_resize.png", | |
"a man", | |
"Neon", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
[ | |
"./examples/kaifu_resize.png", | |
"a man", | |
"Vibrant Color", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
] | |
return case | |
def run_for_examples(face_file, prompt, style, negative_prompt): | |
return generate_image(face_file, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
w, h = image_pil.size | |
out_img = np.zeros([h, w, 3]) | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly( | |
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 | |
) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
def resize_img( | |
input_image, | |
max_side=1280, | |
min_side=1024, | |
size=None, | |
pad_to_max_side=False, | |
mode=PIL.Image.BILINEAR, | |
base_pixel_number=64, | |
): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio * w), round(ratio * h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + " " + negative | |
def check_input_image(face_image): | |
if face_image is None: | |
raise gr.Error("Cannot find any input face image! Please upload the face image") | |
#@spaces.GPU | |
def generate_image( | |
face_image_path, | |
pose_image_path, | |
prompt, | |
negative_prompt, | |
style_name, | |
enhance_face_region, | |
num_steps, | |
identitynet_strength_ratio, | |
adapter_strength_ratio, | |
guidance_scale, | |
seed, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if prompt is None: | |
prompt = "a person" | |
# apply the style template | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
face_image = load_image(face_image_path) | |
face_image = resize_img(face_image) | |
face_image_cv2 = convert_from_image_to_cv2(face_image) | |
height, width, _ = face_image_cv2.shape | |
# Extract face features | |
face_info = app.get(face_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error("Cannot find any face in the image! Please upload another person image") | |
face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1])[ | |
-1 | |
] # only use the maximum face | |
face_emb = face_info["embedding"] | |
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) | |
if pose_image_path is not None: | |
pose_image = load_image(pose_image_path) | |
pose_image = resize_img(pose_image) | |
pose_image_cv2 = convert_from_image_to_cv2(pose_image) | |
face_info = app.get(pose_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error("Cannot find any face in the reference image! Please upload another person image") | |
face_info = face_info[-1] | |
face_kps = draw_kps(pose_image, face_info["kps"]) | |
width, height = face_kps.size | |
if enhance_face_region: | |
control_mask = np.zeros([height, width, 3]) | |
x1, y1, x2, y2 = face_info["bbox"] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
control_mask[y1:y2, x1:x2] = 255 | |
control_mask = Image.fromarray(control_mask.astype(np.uint8)) | |
else: | |
control_mask = None | |
generator = torch.Generator(device=device).manual_seed(seed) | |
print("Start inference...") | |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") | |
pipe.set_ip_adapter_scale(adapter_strength_ratio) | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image_embeds=face_emb, | |
image=face_kps, | |
control_mask=control_mask, | |
controlnet_conditioning_scale=float(identitynet_strength_ratio), | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
generator=generator, | |
).images | |
gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir()) | |
temp_file_path = os.path.join(gradio_temp_dir, "image.png") | |
images[0].save(temp_file_path, format="PNG") | |
print(f"Image saved in: {temp_file_path}") | |
gc.collect() | |
if device == 'mps': | |
torch.mps.empty_cache() | |
elif device == 'cuda': | |
torch.cuda.empty_cache() | |
return images[0], gr.update(visible=True), temp_file_path | |
### Description | |
title = r""" | |
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1> | |
""" | |
description = r""" | |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br> | |
How to use:<br> | |
1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred. | |
2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose. | |
3. Enter a text prompt as done in normal text-to-image models. | |
4. Click the <b>Submit</b> button to start customizing. | |
5. Share your customizd photo with your friends, enjoy😊! | |
""" | |
article = r""" | |
--- | |
📝 **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
@article{wang2024instantid, | |
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds}, | |
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony}, | |
journal={arXiv preprint arXiv:2401.07519}, | |
year={2024} | |
} | |
``` | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. | |
""" | |
tips = r""" | |
### Usage tips of InstantID | |
1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter). | |
2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale. | |
3. If text control is not as expected, decrease ip_adapter_scale. | |
4. Find a good base model always makes a difference. | |
""" | |
css = """ | |
.gradio-container { width: 90% !important } | |
#row-height { height: 65px !important } | |
""" | |
with gr.Blocks(css=css) as demo: | |
# description | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
# upload face image | |
face_file = gr.Image(label="Upload a photo of your face", type="filepath") | |
# optional: upload a reference pose image | |
pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath") | |
# prompt | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Give simple prompt is enough to achieve good face fedility", | |
placeholder="A photo of a person", | |
value="", | |
) | |
submit = gr.Button("Submit", variant="primary") | |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
# strength | |
identitynet_strength_ratio = gr.Slider( | |
label="IdentityNet strength (for fidelity)", | |
minimum=0, | |
maximum=1.5, | |
step=0.05, | |
value=0.80, | |
) | |
adapter_strength_ratio = gr.Slider( | |
label="Image adapter strength (for detail)", | |
minimum=0, | |
maximum=1.5, | |
step=0.05, | |
value=0.80, | |
) | |
with gr.Accordion(open=False, label="Advanced Options"): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="low quality", | |
value="(lowres, low quality, worst quality:1.2), (text:1.2), (frame:1.2), watermark, deformed, ugly, deformed eyes, blur, blurry, noisy, out of focus, nudity, naked, skimpy, scanty, bare skin, exposed, monochrome, pet collar", | |
) | |
num_steps = gr.Slider( | |
label="Number of sample steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=num_inference_steps, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=guidance_scale, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True) | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
download_image = gr.File(label="Download Image", file_count="single", elem_id="row-height") | |
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False) | |
submit.click( | |
fn=remove_tips, | |
outputs=usage_tips, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=check_input_image, | |
inputs=face_file, | |
queue=False, | |
api_name=False, | |
).success( | |
fn=generate_image, | |
inputs=[ | |
face_file, | |
pose_file, | |
prompt, | |
negative_prompt, | |
style, | |
enhance_face_region, | |
num_steps, | |
identitynet_strength_ratio, | |
adapter_strength_ratio, | |
guidance_scale, | |
seed, | |
], | |
outputs=[output_image, usage_tips, download_image], | |
) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[face_file, prompt, style, negative_prompt], | |
outputs=[output_image, usage_tips, download_image], | |
fn=run_for_examples, | |
) | |
gr.Markdown(article) | |
demo.queue(api_open=False) | |
demo.launch() | |