Spaces:
Runtime error
Runtime error
cocktailpeanut
commited on
Commit
·
a5e6b9f
1
Parent(s):
3760ea6
update
Browse files- app.py +46 -10
- requirements.txt +5 -4
app.py
CHANGED
@@ -5,7 +5,7 @@ import cv2
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import PIL
|
8 |
-
import spaces
|
9 |
import torch
|
10 |
from diffusers.models import ControlNetModel
|
11 |
from diffusers.utils import load_image
|
@@ -17,7 +17,16 @@ from style_template import styles
|
|
17 |
|
18 |
# global variable
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
STYLE_NAMES = list(styles.keys())
|
22 |
DEFAULT_STYLE_NAME = "Watercolor"
|
23 |
|
@@ -31,6 +40,7 @@ hf_hub_download(
|
|
31 |
local_dir="./checkpoints",
|
32 |
)
|
33 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
|
|
34 |
|
35 |
# Load face encoder
|
36 |
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
@@ -39,23 +49,49 @@ app.prepare(ctx_id=0, det_size=(640, 640))
|
|
39 |
# Path to InstantID models
|
40 |
face_adapter = "./checkpoints/ip-adapter.bin"
|
41 |
controlnet_path = "./checkpoints/ControlNetModel"
|
|
|
42 |
|
43 |
# Load pipeline
|
44 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
|
|
45 |
|
46 |
base_model_path = "wangqixun/YamerMIX_v8"
|
47 |
|
48 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
49 |
base_model_path,
|
50 |
controlnet=controlnet,
|
51 |
-
torch_dtype=torch.float16,
|
|
|
52 |
safety_checker=None,
|
53 |
feature_extractor=None,
|
54 |
)
|
55 |
-
pipe.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
pipe.load_ip_adapter_instantid(face_adapter)
|
57 |
-
pipe.image_proj_model.to("cuda")
|
58 |
-
pipe.unet.to("cuda")
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
@@ -187,7 +223,7 @@ def check_input_image(face_image):
|
|
187 |
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
188 |
|
189 |
|
190 |
-
|
191 |
def generate_image(
|
192 |
face_image_path,
|
193 |
pose_image_path,
|
@@ -369,14 +405,14 @@ with gr.Blocks(css=css) as demo:
|
|
369 |
minimum=20,
|
370 |
maximum=100,
|
371 |
step=1,
|
372 |
-
value=
|
373 |
)
|
374 |
guidance_scale = gr.Slider(
|
375 |
label="Guidance scale",
|
376 |
minimum=0.1,
|
377 |
maximum=10.0,
|
378 |
step=0.1,
|
379 |
-
value=
|
380 |
)
|
381 |
seed = gr.Slider(
|
382 |
label="Seed",
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import PIL
|
8 |
+
#import spaces
|
9 |
import torch
|
10 |
from diffusers.models import ControlNetModel
|
11 |
from diffusers.utils import load_image
|
|
|
17 |
|
18 |
# global variable
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
if torch.backends.mps.is_available():
|
23 |
+
device = "mps"
|
24 |
+
torch_dtype = torch.float32
|
25 |
+
elif torch.cuda.is_available():
|
26 |
+
device = "cuda"
|
27 |
+
else:
|
28 |
+
device = "cpu"
|
29 |
+
|
30 |
STYLE_NAMES = list(styles.keys())
|
31 |
DEFAULT_STYLE_NAME = "Watercolor"
|
32 |
|
|
|
40 |
local_dir="./checkpoints",
|
41 |
)
|
42 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
43 |
+
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
44 |
|
45 |
# Load face encoder
|
46 |
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
|
|
49 |
# Path to InstantID models
|
50 |
face_adapter = "./checkpoints/ip-adapter.bin"
|
51 |
controlnet_path = "./checkpoints/ControlNetModel"
|
52 |
+
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
|
53 |
|
54 |
# Load pipeline
|
55 |
+
#controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
56 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype)
|
57 |
|
58 |
base_model_path = "wangqixun/YamerMIX_v8"
|
59 |
|
60 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
61 |
base_model_path,
|
62 |
controlnet=controlnet,
|
63 |
+
#torch_dtype=torch.float16,
|
64 |
+
torch_dtype=torch_dtype,
|
65 |
safety_checker=None,
|
66 |
feature_extractor=None,
|
67 |
)
|
68 |
+
#pipe.cuda()
|
69 |
+
|
70 |
+
num_inference_steps = 30
|
71 |
+
guidance_scale = 5
|
72 |
+
|
73 |
+
+# LCM
|
74 |
+
if os.environ.get("LCM"):
|
75 |
+
num_inference_steps = 10
|
76 |
+
guidance_scale = 0
|
77 |
+
|
78 |
+
pipe.load_lora_weights(lcm_lora_path)
|
79 |
+
pipe.fuse_lora()
|
80 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
81 |
+
|
82 |
+
if device == 'mps':
|
83 |
+
pipe.to("mps", torch_dtype)
|
84 |
+
pipe.enable_attention_slicing()
|
85 |
+
elif device == 'cuda':
|
86 |
+
pipe.cuda()
|
87 |
+
|
88 |
pipe.load_ip_adapter_instantid(face_adapter)
|
89 |
+
#pipe.image_proj_model.to("cuda")
|
90 |
+
#pipe.unet.to("cuda")
|
91 |
+
if device == 'mps' or device == 'cuda':
|
92 |
+
pipe.image_proj_model.to(device)
|
93 |
+
pipe.unet.to(device)
|
94 |
+
|
95 |
|
96 |
|
97 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
223 |
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
224 |
|
225 |
|
226 |
+
#@spaces.GPU
|
227 |
def generate_image(
|
228 |
face_image_path,
|
229 |
pose_image_path,
|
|
|
405 |
minimum=20,
|
406 |
maximum=100,
|
407 |
step=1,
|
408 |
+
value=num_inference_steps,
|
409 |
)
|
410 |
guidance_scale = gr.Slider(
|
411 |
label="Guidance scale",
|
412 |
minimum=0.1,
|
413 |
maximum=10.0,
|
414 |
step=0.1,
|
415 |
+
value=guidance_scale,
|
416 |
)
|
417 |
seed = gr.Slider(
|
418 |
label="Seed",
|
requirements.txt
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
diffusers==0.25.0
|
2 |
-
torch==2.0.0
|
3 |
-
torchvision==0.15.1
|
4 |
transformers==4.36.2
|
5 |
accelerate
|
6 |
safetensors
|
7 |
einops
|
8 |
-
onnxruntime-gpu
|
|
|
9 |
spaces==0.19.4
|
10 |
omegaconf
|
11 |
peft
|
12 |
huggingface-hub==0.20.2
|
13 |
opencv-python
|
14 |
-
insightface
|
|
|
1 |
diffusers==0.25.0
|
2 |
+
#torch==2.0.0
|
3 |
+
#torchvision==0.15.1
|
4 |
transformers==4.36.2
|
5 |
accelerate
|
6 |
safetensors
|
7 |
einops
|
8 |
+
#onnxruntime-gpu
|
9 |
+
onnxruntime
|
10 |
spaces==0.19.4
|
11 |
omegaconf
|
12 |
peft
|
13 |
huggingface-hub==0.20.2
|
14 |
opencv-python
|
15 |
+
insightface
|