Spaces:
Runtime error
Runtime error
File size: 8,741 Bytes
7d421db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import warnings
from typing import Optional
import torch
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from einops import rearrange
from torch import Tensor
from torch.nn.functional import interpolate
from tqdm import trange
import random
from MotionDirector_train import export_to_video, handle_memory_attention, load_primary_models, unet_and_text_g_c, freeze_models
from utils.lora_handler import LoraHandler
from utils.ddim_utils import ddim_inversion
from utils.lora import extract_lora_child_module
import imageio
def initialize_pipeline(
model: str,
device: str = "cuda",
xformers: bool = True,
sdp: bool = True,
lora_path: str = "",
lora_rank: int = 32,
lora_scale: float = 1.0,
):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
# Freeze any necessary models
freeze_models([vae, text_encoder, unet])
# Enable xformers if available
handle_memory_attention(xformers, sdp, unet)
lora_manager_temporal = LoraHandler(
version="cloneofsimo",
use_unet_lora=True,
use_text_lora=False,
save_for_webui=False,
only_for_webui=False,
unet_replace_modules=["TransformerTemporalModel"],
text_encoder_replace_modules=None,
lora_bias=None
)
unet_lora_params, unet_negation = lora_manager_temporal.add_lora_to_model(
True, unet, lora_manager_temporal.unet_replace_modules, 0, lora_path, r=lora_rank, scale=lora_scale)
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path=model,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.half),
vae=vae.to(device=device, dtype=torch.half),
unet=unet.to(device=device, dtype=torch.half),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe
def inverse_video(pipe, latents, num_steps):
ddim_inv_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
ddim_inv_scheduler.set_timesteps(num_steps)
ddim_inv_latent = ddim_inversion(
pipe, ddim_inv_scheduler, video_latent=latents.to(pipe.device),
num_inv_steps=num_steps, prompt="")[-1]
return ddim_inv_latent
def prepare_input_latents(
pipe: TextToVideoSDPipeline,
batch_size: int,
num_frames: int,
height: int,
width: int,
latents_path:str,
noise_prior: float
):
# initialize with random gaussian noise
scale = pipe.vae_scale_factor
shape = (batch_size, pipe.unet.config.in_channels, num_frames, height // scale, width // scale)
if noise_prior > 0.:
cached_latents = torch.load(latents_path)
if 'inversion_noise' not in cached_latents:
latents = inverse_video(pipe, cached_latents['latents'].unsqueeze(0), 50).squeeze(0)
else:
latents = torch.load(latents_path)['inversion_noise'].unsqueeze(0)
if latents.shape[0] != batch_size:
latents = latents.repeat(batch_size, 1, 1, 1, 1)
if latents.shape != shape:
latents = interpolate(rearrange(latents, "b c f h w -> (b f) c h w", b=batch_size), (height // scale, width // scale), mode='bilinear')
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=batch_size)
noise = torch.randn_like(latents, dtype=torch.half)
latents_base = noise
latents = (noise_prior) ** 0.5 * latents + (1 - noise_prior) ** 0.5 * noise
else:
latents = torch.randn(shape, dtype=torch.half)
latents_base = latents
return latents, latents_base
class MotionDirector():
def __init__(self):
self.version = "0.0.0"
self.foundation_model_path = "./zeroscope_v2_576w/"
self.lora_path = "./MotionDirector_pretrained/dolly_zoom_(hitchcockian_zoom)/checkpoint-default/temporal/lora"
with torch.autocast("cuda", dtype=torch.half):
self.pipe = initialize_pipeline(model=self.foundation_model_path, lora_path=self.lora_path, lora_scale=1)
def reload_lora(self, lora_path):
if lora_path != self.lora_path:
self.lora_path = lora_path
with torch.autocast("cuda", dtype=torch.half):
self.pipe = initialize_pipeline(model=self.foundation_model_path, lora_path=self.lora_path)
def __call__(self, model_select, text_pormpt, neg_text_pormpt, random_seed, steps, guidance_scale, baseline_select):
model_select = str(model_select)
out_name = f"./outputs/inference"
out_name += f"{text_pormpt}".replace(' ', '_').replace(',', '').replace('.', '')
model_select_type = model_select.split('--')[1].strip()
model_select_type = model_select_type.lower().replace(' ', '_')
lora_path = f"./MotionDirector_pretrained/{model_select_type}/checkpoint-default/temporal/lora"
self.reload_lora(lora_path)
latents_folder = f"./MotionDirector_pretrained/{model_select_type}/cached_latents"
latents_path = f"{latents_folder}/{random.choice(os.listdir(latents_folder))}"
assert os.path.exists(lora_path)
if '3-' in model_select:
noise_prior = 0.
elif '2-' in model_select:
noise_prior = 0.5
else:
noise_prior = 0.3
if random_seed > 1000:
torch.manual_seed(random_seed)
else:
random_seed = random.randint(100, 10000000)
torch.manual_seed(random_seed)
device = "cuda"
with torch.autocast(device, dtype=torch.half):
# prepare input latents
with torch.no_grad():
init_latents,init_latents_base = prepare_input_latents(
pipe=self.pipe,
batch_size=1,
num_frames=16,
height=384,
width=384,
latents_path=latents_path,
noise_prior=noise_prior
)
video_frames = self.pipe(
prompt=text_pormpt,
negative_prompt=neg_text_pormpt,
width=384,
height=384,
num_frames=16,
num_inference_steps=steps,
guidance_scale=guidance_scale,
latents=init_latents
).frames
out_file = f"{out_name}_{random_seed}.mp4"
os.makedirs(os.path.dirname(out_file), exist_ok=True)
export_to_video(video_frames, out_file, 8)
if baseline_select:
with torch.autocast("cuda", dtype=torch.half):
loras = extract_lora_child_module(self.pipe.unet, target_replace_module=["TransformerTemporalModel"])
for lora_i in loras:
lora_i.scale = 0.
# self.pipe = initialize_pipeline(model=self.foundation_model_path, lora_path=self.lora_path,
# lora_scale=0.)
with torch.no_grad():
video_frames = self.pipe(
prompt=text_pormpt,
negative_prompt=neg_text_pormpt,
width=384,
height=384,
num_frames=16,
num_inference_steps=steps,
guidance_scale=guidance_scale,
latents=init_latents_base,
).frames
out_file_baseline = f"{out_name}_{random_seed}_baseline.mp4"
os.makedirs(os.path.dirname(out_file_baseline), exist_ok=True)
export_to_video(video_frames, out_file_baseline, 8)
# with torch.autocast("cuda", dtype=torch.half):
# self.pipe = initialize_pipeline(model=self.foundation_model_path, lora_path=self.lora_path,
# lora_scale=1.)
loras = extract_lora_child_module(self.pipe.unet,
target_replace_module=["TransformerTemporalModel"])
for lora_i in loras:
lora_i.scale = 1.
else:
out_file_baseline = None
return [out_file, out_file_baseline]
|