File size: 6,268 Bytes
bc58275
a27be48
 
 
 
 
 
 
 
c63fe57
96ee1f8
a27be48
fe4927b
a9289c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2d24
 
a9289c0
 
 
 
 
 
 
482061c
 
fbfeead
482061c
ddbdec3
a9289c0
 
ddbdec3
a9289c0
 
 
 
ddbdec3
a9289c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc58275
a9289c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657e75b
 
 
62970f2
657e75b
 
a9289c0
657e75b
 
 
 
991c987
 
657e75b
e0c8474
 
 
 
 
9a757b4
efba17c
ad5a284
efba17c
 
e0c8474
 
657e75b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#import spaces
import huggingface_hub

huggingface_hub.snapshot_download(
    repo_id='h94/IP-Adapter',
    allow_patterns=[
        'models/**',
        'sdxl_models/**',
    ],
    local_dir='./',
    local_dir_use_symlinks=False,
)

import gradio as gr
from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel
from rembg import remove
from PIL import Image
import torch
from ip_adapter import IPAdapterXL
from ip_adapter.utils import register_cross_attention_hook, get_net_attn_map, attnmaps2images
from PIL import Image, ImageChops, ImageEnhance
import numpy as np

import os
import glob
import torch
import cv2
import argparse

import DPT.util.io

from torchvision.transforms import Compose

from DPT.dpt.models import DPTDepthModel
from DPT.dpt.midas_net import MidasNet_large
from DPT.dpt.transforms import Resize, NormalizeImage, PrepareForNet

import devicetorch

"""
Get ZeST Ready
"""
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin"
controlnet_path = "diffusers/controlnet-depth-sdxl-1.0"
#device = "cuda"
#torch.cuda.empty_cache()
device = devicetorch.get(torch)
devicetorch.empty_cache(torch)
dtype = devicetorch.dtype(torch, "float16")

# load SDXL pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=dtype).to(device)
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
    base_model_path,
    controlnet=controlnet,
    use_safetensors=True,
    torch_dtype=dtype,
    add_watermarker=False,
).to(device)
pipe.unet = register_cross_attention_hook(pipe.unet)

ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)


"""
Get Depth Model Ready
"""
model_path = "DPT/weights/dpt_hybrid-midas-501f0c75.pt"
net_w = net_h = 384
model = DPTDepthModel(
    path=model_path,
    backbone="vitb_rn50_384",
    non_negative=True,
    enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet(),
        ]
    )

model.eval()

#@spaces.GPU()
def greet(input_image, material_exemplar):
    
    """
    Compute depth map from input_image
    """
    
    img = np.array(input_image)
    
    img_input = transform({"image": img})["image"]

    # compute
    with torch.no_grad():
        sample = torch.from_numpy(img_input).unsqueeze(0)

        # if optimize == True and device == torch.device("cuda"):
        #     sample = sample.to(memory_format=torch.channels_last)
        #     sample = sample.half()

        prediction = model.forward(sample)
        prediction = (
            torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            )
            .squeeze()
            .cpu()
            .numpy()
        )
        
    depth_min = prediction.min()
    depth_max = prediction.max()
    bits = 2
    max_val = (2 ** (8 * bits)) - 1

    if depth_max - depth_min > np.finfo("float").eps:
        out = max_val * (prediction - depth_min) / (depth_max - depth_min)
    else:
        out = np.zeros(prediction.shape, dtype=depth.dtype)
    
    out = (out / 256).astype('uint8')
    depth_map = Image.fromarray(out).resize((1024, 1024))
    
    
    """
    Process foreground decolored image
    """
    rm_bg = remove(input_image)
    target_mask = rm_bg.convert("RGB").point(lambda x: 0 if x < 1 else 255).convert('L').convert('RGB')
    mask_target_img = ImageChops.lighter(input_image, target_mask)
    invert_target_mask = ImageChops.invert(target_mask)
    gray_target_image = input_image.convert('L').convert('RGB')
    gray_target_image = ImageEnhance.Brightness(gray_target_image)
    factor = 1.0  # Try adjusting this to get the desired brightness
    gray_target_image = gray_target_image.enhance(factor)
    grayscale_img = ImageChops.darker(gray_target_image, target_mask)
    img_black_mask = ImageChops.darker(input_image, invert_target_mask)
    grayscale_init_img = ImageChops.lighter(img_black_mask, grayscale_img)
    init_img = grayscale_init_img
    
    """
    Process material exemplar and resize all images
    """
    ip_image = material_exemplar.resize((1024, 1024))
    init_img = init_img.resize((1024,1024))
    mask = target_mask.resize((1024, 1024))
    
    
    num_samples = 1
    images = ip_model.generate(pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=30, seed=42)
    
    return images[0]

css = """
#col-container{
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # ZeST: Zero-Shot Material Transfer from a Single Image
        <p>Upload two images -- input image and material exemplar. (both 1024*1024 for better results) <br />
        ZeST extracts the material from the exemplar and cast it onto the input image following the original lighting cues.</p>
        """)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(type="pil", label="input image")
                    input_image2 = gr.Image(type="pil", label = "material examplar")
                submit_btn = gr.Button("Submit")
                gr.Examples(
                    examples = [["demo_assets/input_imgs/pumpkin.png", "demo_assets/material_exemplars/cup_glaze.png"]],
                    inputs = [input_image, input_image2]
                )
            with gr.Column():
                output_image = gr.Image(label="transfer result")
    submit_btn.click(fn=greet, inputs=[input_image, input_image2], outputs=[output_image])

demo.queue().launch()