Spaces:
Runtime error
Runtime error
File size: 8,830 Bytes
fd012a7 86f7f0a fd012a7 86f7f0a fd012a7 86f7f0a fd012a7 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a fd012a7 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from typing import Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from transformers import LlamaModel, LlamaConfig
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
class MIDIModelConfig:
def __init__(self, tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2],
net_config: LlamaConfig, net_token_config: LlamaConfig):
self.tokenizer = tokenizer
self.net_config = net_config
self.net_token_config = net_token_config
self.n_embd = net_token_config.hidden_size
@staticmethod
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096):
tokenizer = MIDITokenizer(tokenizer_ver)
tokenizer.set_optimise_midi(optimise_midi)
net_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head,
num_hidden_layers=n_layer, intermediate_size=n_inner,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)
net_token_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head // 4,
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)
return MIDIModelConfig(tokenizer, net_config, net_token_config)
@staticmethod
def from_name(name="tv2o-medium"):
tv, size = name.split("-")
tv = tv[1:]
if tv[-1] == "o":
o = True
tv = tv[:-1]
else:
o = False
if tv not in ["v1", "v2"]:
raise ValueError(f"Unknown tokenizer version {tv}")
if size == "medium":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=12, n_head=16, n_embd=1024, n_inner=4096)
elif size == "large":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=24, n_head=16, n_embd=1024, n_inner=4096)
else:
raise ValueError(f"Unknown model size {size}")
class MIDIModel(nn.Module):
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
super(MIDIModel, self).__init__()
self.tokenizer = config.tokenizer
self.net = LlamaModel(config.net_config)
self.net_token = LlamaModel(config.net_token_config)
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
self.device = "cpu"
def to(self, *args, **kwargs):
if "device" in kwargs:
self.device = kwargs["device"]
return super(MIDIModel, self).to(*args, **kwargs)
def forward_token(self, hidden_state, x=None):
"""
:param hidden_state: (batch_size, n_embd)
:param x: (batch_size, token_sequence_length)
:return: (batch_size, 1 + token_sequence_length, vocab_size)
"""
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
if x is not None:
x = self.net_token.embed_tokens(x)
hidden_state = torch.cat([hidden_state, x], dim=1)
hidden_state = self.net_token.forward(inputs_embeds=hidden_state).last_hidden_state
return self.lm_head(hidden_state)
def forward(self, x):
"""
:param x: (batch_size, midi_sequence_length, token_sequence_length)
:return: hidden (batch_size, midi_sequence_length, n_embd)
"""
# merge token sequence
x = self.net.embed_tokens(x)
x = x.sum(dim=-2)
x = self.net.forward(inputs_embeds=x)
return x.last_hidden_state
def sample_top_p_k(self, probs, p, k, generator=None):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
mask[:k] = 1
probs_sort = probs_sort * mask
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
shape = probs_sort.shape
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]),
num_samples=1, generator=generator).reshape(*shape[:-1], 1)
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
return next_token
@torch.inference_mode()
def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
tokenizer = self.tokenizer
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
input_tensor = input_tensor.unsqueeze(0)
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
else:
if len(prompt.shape) == 2:
prompt = prompt[None, :]
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif prompt.shape[0] == 1:
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
else:
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
prompt = prompt[..., :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
with bar:
while cur_len < max_len:
end = [False] * batch_size
hidden = self.forward(input_tensor)[:, -1]
next_token_seq = None
event_names = [""] * batch_size
for i in range(max_token_seq):
mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=self.device)
for b in range(batch_size):
if end[b]:
mask[b, tokenizer.pad_id] = 1
continue
if i == 0:
mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
else:
param_names = tokenizer.events[event_names[b]]
if i > len(param_names):
mask[b, tokenizer.pad_id] = 1
continue
mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
mask = mask.unsqueeze(1)
logits = self.forward_token(hidden, next_token_seq)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
if i == 0:
next_token_seq = samples
for b in range(batch_size):
if end[b]:
continue
eid = samples[b].item()
if eid == tokenizer.eos_id:
end[b] = True
else:
event_names[b] = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, samples], dim=1)
if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
if all(end):
break
return input_tensor.cpu().numpy()
|