Spaces:
Running
Running
import numpy as np | |
import streamlit as st | |
def brain(supabase): | |
## List all documents | |
response = supabase.table("documents").select("name:metadata->>file_name, size:metadata->>file_size", count="exact").filter('metadata->>user', 'eq', st.session_state["username"]).execute() | |
documents = response.data # Access the data from the response | |
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary | |
unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)] | |
# Sort the list of documents by size in decreasing order | |
unique_data.sort(key=lambda x: int(x['size']), reverse=True) | |
# Display some metrics at the top of the page | |
col1, col2 = st.columns(2) | |
col1.metric(label="Total Documents", value=len(unique_data)) | |
col2.metric(label="Total Size (bytes)", value=sum(int(doc['size']) for doc in unique_data)) | |
for document in unique_data: | |
# Create a unique key for each button by using the document name | |
button_key = f"delete_{document['name']}" | |
# Display the document name, size and the delete button on the same line | |
col1, col2, col3 = st.columns([3, 1, 1]) | |
col1.markdown(f"**{document['name']}** ({document['size']} bytes)") | |
if col2.button('❌', key=button_key): | |
delete_document(supabase, document['name']) | |
def delete_document(supabase, document_name): | |
# Delete the document from the database | |
response = supabase.table("documents").delete().match({"metadata->>file_name": document_name}).execute() | |
# Check if the deletion was successful | |
if len(response.data) > 0: | |
st.write(f"✂️ {document_name} was deleted.") | |
else: | |
st.write(f"❌ {document_name} was not deleted.") | |