Spaces:
Running
Running
import anthropic | |
import streamlit as st | |
from streamlit.logger import get_logger | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.llms import OpenAI | |
from langchain.llms import HuggingFaceEndpoint | |
from langchain.chat_models import ChatAnthropic | |
from langchain.vectorstores import SupabaseVectorStore | |
from stats import add_usage | |
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) | |
openai_api_key = st.secrets.openai_api_key | |
anthropic_api_key = st.secrets.anthropic_api_key | |
hf_api_key = st.secrets.hf_api_key | |
logger = get_logger(__name__) | |
def count_tokens(question, model): | |
count = f'Words: {len(question.split())}' | |
if model.startswith("claude"): | |
count += f' | Tokens: {anthropic.count_tokens(question)}' | |
return count | |
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db): | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
question = st.text_area("## Ask a question") | |
columns = st.columns(3) | |
with columns[0]: | |
button = st.button("Ask") | |
with columns[1]: | |
count_button = st.button("Count Tokens", type='secondary') | |
with columns[2]: | |
clear_history = st.button("Clear History", type='secondary') | |
if clear_history: | |
# Clear memory in Langchain | |
memory.clear() | |
st.session_state['chat_history'] = [] | |
st.experimental_rerun() | |
if button: | |
qa = None | |
if not st.session_state["overused"]: | |
add_usage(stats_db, "chat", "prompt" + question, {"model": model, "temperature": st.session_state['temperature']}) | |
if model.startswith("gpt"): | |
logger.info('Using OpenAI model %s', model) | |
qa = ConversationalRetrievalChain.from_llm( | |
OpenAI( | |
model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True) | |
elif anthropic_api_key and model.startswith("claude"): | |
logger.info('Using Anthropics model %s', model) | |
qa = ConversationalRetrievalChain.from_llm( | |
ChatAnthropic( | |
model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400) | |
elif hf_api_key: | |
logger.info('Using HF model %s', model) | |
# print(st.session_state['max_tokens']) | |
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model) | |
model_kwargs = {"temperature" : st.session_state['temperature'], | |
"max_new_tokens" : st.session_state['max_tokens'], | |
"return_full_text" : False} | |
hf = HuggingFaceEndpoint( | |
endpoint_url=endpoint_url, | |
task="text-generation", | |
huggingfacehub_api_token=hf_api_key, | |
model_kwargs=model_kwargs | |
) | |
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(), memory=memory, verbose=True, return_source_documents=True) | |
st.session_state['chat_history'].append(("You", question)) | |
# Generate model's response and add it to chat history | |
model_response = qa({"question": question}) | |
logger.info('Result: %s', model_response["answer"]) | |
st.session_state['chat_history'].append(("meraKB", model_response["answer"])) | |
logger.info('Sources: %s', model_response["source_documents"]) | |
# Display chat history | |
st.empty() | |
for speaker, text in st.session_state['chat_history']: | |
st.markdown(f"**{speaker}:** {text}") | |
else: | |
st.error("You have used all your free credits. Please try again later or self host.") | |
if count_button: | |
st.write(count_tokens(question, model)) | |