Asankhaya Sharma commited on
Commit
6128070
·
1 Parent(s): 1ca7761
Files changed (3) hide show
  1. main.py +4 -2
  2. question.py +14 -14
  3. requirements.txt +4 -4
main.py CHANGED
@@ -7,7 +7,7 @@ from question import chat_with_doc
7
  from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
8
  from langchain.vectorstores import SupabaseVectorStore
9
  from supabase import Client, create_client
10
- from stats import add_usage
11
 
12
  supabase_url = st.secrets.SUPABASE_URL
13
  supabase_key = st.secrets.SUPABASE_KEY
@@ -71,6 +71,8 @@ if 'max_tokens' not in st.session_state:
71
  if 'username' not in st.session_state:
72
  st.session_state['username'] = username
73
 
74
- chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
 
 
75
 
76
  st.markdown("---\n\n")
 
7
  from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
8
  from langchain.vectorstores import SupabaseVectorStore
9
  from supabase import Client, create_client
10
+ from stats import get_usage
11
 
12
  supabase_url = st.secrets.SUPABASE_URL
13
  supabase_key = st.secrets.SUPABASE_KEY
 
71
  if 'username' not in st.session_state:
72
  st.session_state['username'] = username
73
 
74
+ stats = str(get_usage(supabase))
75
+
76
+ chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase, stats=stats)
77
 
78
  st.markdown("---\n\n")
question.py CHANGED
@@ -7,7 +7,7 @@ from langchain.llms import OpenAI
7
  from langchain.llms import HuggingFaceEndpoint
8
  from langchain.chat_models import ChatAnthropic
9
  from langchain.vectorstores import SupabaseVectorStore
10
- from stats import add_usage, get_usage
11
 
12
  memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
13
  openai_api_key = st.secrets.openai_api_key
@@ -15,13 +15,12 @@ anthropic_api_key = st.secrets.anthropic_api_key
15
  hf_api_key = st.secrets.hf_api_key
16
  logger = get_logger(__name__)
17
 
18
- def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
19
 
20
  if 'chat_history' not in st.session_state:
21
  st.session_state['chat_history'] = []
22
 
23
- stats = str(get_usage(stats_db))
24
- question = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
25
  columns = st.columns(2)
26
  with columns[0]:
27
  button = st.button("Ask")
@@ -38,7 +37,7 @@ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
38
 
39
  if button:
40
  qa = None
41
- add_usage(stats_db, "chat", "prompt" + question, {"model": model, "temperature": st.session_state['temperature']})
42
  if model.startswith("gpt"):
43
  logger.info('Using OpenAI model %s', model)
44
  qa = ConversationalRetrievalChain.from_llm(
@@ -62,12 +61,14 @@ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
62
  huggingfacehub_api_token=hf_api_key,
63
  model_kwargs=model_kwargs
64
  )
65
- qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.8, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True)
66
 
67
- st.session_state['chat_history'].append(("You", question))
 
 
68
 
69
  # Generate model's response and add it to chat history
70
- model_response = qa({"question": question})
71
  logger.info('Result: %s', model_response["answer"])
72
  sources = model_response["source_documents"]
73
  logger.info('Sources: %s', model_response["source_documents"])
@@ -77,9 +78,8 @@ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
77
  else:
78
  st.session_state['chat_history'].append(("Safety Copilot", "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."))
79
 
80
-
81
- # Display chat history
82
- st.empty()
83
- chat_history = st.session_state['chat_history']
84
- for speaker, text in chat_history:
85
- st.markdown(f"**{speaker}:** {text}")
 
7
  from langchain.llms import HuggingFaceEndpoint
8
  from langchain.chat_models import ChatAnthropic
9
  from langchain.vectorstores import SupabaseVectorStore
10
+ from stats import add_usage
11
 
12
  memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
13
  openai_api_key = st.secrets.openai_api_key
 
15
  hf_api_key = st.secrets.hf_api_key
16
  logger = get_logger(__name__)
17
 
18
+ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db, stats):
19
 
20
  if 'chat_history' not in st.session_state:
21
  st.session_state['chat_history'] = []
22
 
23
+ query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
 
24
  columns = st.columns(2)
25
  with columns[0]:
26
  button = st.button("Ask")
 
37
 
38
  if button:
39
  qa = None
40
+ add_usage(stats_db, "chat", "prompt" + query, {"model": model, "temperature": st.session_state['temperature']})
41
  if model.startswith("gpt"):
42
  logger.info('Using OpenAI model %s', model)
43
  qa = ConversationalRetrievalChain.from_llm(
 
61
  huggingfacehub_api_token=hf_api_key,
62
  model_kwargs=model_kwargs
63
  )
64
+ qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True)
65
 
66
+ print("Question>")
67
+ print(query)
68
+ st.session_state['chat_history'].append(("You", query))
69
 
70
  # Generate model's response and add it to chat history
71
+ model_response = qa({"question": query})
72
  logger.info('Result: %s', model_response["answer"])
73
  sources = model_response["source_documents"]
74
  logger.info('Sources: %s', model_response["source_documents"])
 
78
  else:
79
  st.session_state['chat_history'].append(("Safety Copilot", "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."))
80
 
81
+ # Display chat history
82
+ st.empty()
83
+ chat_history = st.session_state['chat_history']
84
+ for speaker, text in chat_history:
85
+ st.markdown(f"**{speaker}:** {text}")
 
requirements.txt CHANGED
@@ -1,9 +1,9 @@
1
- langchain
2
  Markdown==3.4.3
3
  openai==0.27.6
4
  pdf2image==1.16.3
5
  pypdf==3.8.1
6
- streamlit==1.30.0
7
  StrEnum==0.4.10
8
  supabase==1.0.3
9
  tiktoken==0.4.0
@@ -12,5 +12,5 @@ anthropic==0.2.8
12
  fastapi==0.95.2
13
  python-multipart==0.0.6
14
  uvicorn==0.22.0
15
- docx2txt
16
- st-login-form
 
1
+ langchain==0.1.0
2
  Markdown==3.4.3
3
  openai==0.27.6
4
  pdf2image==1.16.3
5
  pypdf==3.8.1
6
+ streamlit==1.22.0
7
  StrEnum==0.4.10
8
  supabase==1.0.3
9
  tiktoken==0.4.0
 
12
  fastapi==0.95.2
13
  python-multipart==0.0.6
14
  uvicorn==0.22.0
15
+ docx2txt==0.8
16
+ st-login-form==0.2.1