Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
import torch | |
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline | |
from sonar.models.blaser.loader import load_blaser_model | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
class BLASER20QE(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'sources': datasets.Value('string'), | |
'translations': datasets.Value('string'), | |
}), | |
# See https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions for the data types | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
self.text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder") | |
self.blaser_qe = load_blaser_model("blaser_2_0_qe").eval() | |
#self.blaser_ref = load_blaser_model("blaser_2_0_ref").eval() | |
def _compute(self, sources, translations): | |
"""Returns the scores""" | |
# TODO: adjust the languages | |
src_embs = self.text_embedder.predict(sources, source_lang="eng_Latn") | |
mt_embs = self.text_embedder.predict(translations, source_lang="eng_Latn") | |
with torch.inference_mode(): | |
#ref_score = blaser_ref(src=src_embs, ref=ref_embs, mt=mt_embs).mean().item() | |
qe_score = self.blaser_qe(src=src_embs, mt=mt_embs).mean().item() | |
return { | |
"BLASER 2.0-QE": qe_score, | |
} |