File size: 5,231 Bytes
3590c0c 443ccfa 3590c0c f0a085b 03b48c7 f0a085b 3590c0c f0a085b 994c238 3590c0c 8ebeeb8 3590c0c ea07244 3590c0c f0a085b 3590c0c ea07244 3590c0c f3df2d1 3590c0c f0a085b de273b3 f0a085b 03b48c7 de273b3 03b48c7 994c238 03b48c7 3590c0c ea07244 3590c0c ea07244 76241f8 ea07244 3590c0c f0a085b 3590c0c 994c238 3590c0c ea07244 3590c0c 03b48c7 994c238 03b48c7 3590c0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
#!/usr/bin/env python3
#
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import shutil
import logging
import os
from pathlib import Path
import gradio as gr
from decode import decode
from model import get_pretrained_model, get_vad, language_to_models, get_file
title = "# Next-gen Kaldi: Generate subtitles for videos"
description = """
This space shows how to generate subtitles/captions with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
Please find test video files at
<https://huggingface.co/csukuangfj/vad/tree/main>
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def show_file_info(in_filename: str):
logging.info(f"Input file: {in_filename}")
_ = os.system(f"ffprob -hide_banner -i '{in_filename}'")
def process_uploaded_file(
language: str,
repo_id: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
show_file_info(in_filename)
recognizer = get_pretrained_model(repo_id)
vad = get_vad()
result = decode(recognizer, vad, in_filename)
logging.info(result)
srt_filename = Path(in_filename).with_suffix(".srt")
with open(srt_filename, "w", encoding="utf-8") as f:
f.write(result)
logging.info("Done")
return (
(in_filename, srt_filename),
srt_filename,
build_html_output("Done! Please download the SRT file", "result_item_success"),
result,
)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Upload video from disk"):
uploaded_file = gr.Video(
source="upload",
interactive=True,
label="Upload from disk",
show_share_button=True,
)
upload_button = gr.Button("Submit for recognition")
output_video = gr.Video(label="Output")
output_srt_file = gr.File(label="Generated subtitles", show_label=True)
output_info = gr.HTML(label="Info")
output_textbox = gr.Textbox(label="Recognized speech from uploaded file")
upload_button.click(
process_uploaded_file,
inputs=[
language_radio,
model_dropdown,
uploaded_file,
],
outputs=[
output_video,
output_srt_file,
output_info,
output_textbox,
],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|