uploader / app.py
csukuangfj's picture
small fixes
ffd4c6b
raw
history blame
6.97 kB
#!/usr/bin/env python3
#
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
from pathlib import Path
import gradio as gr
from decode import decode
from model import get_pretrained_model, get_vad, language_to_models
title = "# Next-gen Kaldi: Generate subtitles for videos"
description = """
This space shows how to generate subtitles/captions with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
Please find test video files at
<https://huggingface.co/csukuangfj/vad/tree/main>
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def show_file_info(in_filename: str):
logging.info(f"Input file: {in_filename}")
_ = os.system(f"ffprobe -hide_banner -i '{in_filename}'")
def process_uploaded_video_file(
language: str,
repo_id: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
ans = process(language, repo_id, in_filename)
return (in_filename, ans[0]), ans[0], ans[1], ans[2]
def process_uploaded_audio_file(
language: str,
repo_id: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
return process(language, repo_id, in_filename)
def process(language: str, repo_id: str, in_filename: str):
recognizer = get_pretrained_model(repo_id)
vad = get_vad()
result = decode(recognizer, vad, in_filename)
logging.info(result)
srt_filename = Path(in_filename).with_suffix(".srt")
with open(srt_filename, "w", encoding="utf-8") as f:
f.write(result)
show_file_info(in_filename)
logging.info("Done")
return (
srt_filename,
build_html_output("Done! Please download the SRT file", "result_item_success"),
result,
)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Upload video from disk"):
uploaded_video_file = gr.Video(
source="upload",
interactive=True,
label="Upload from disk",
show_share_button=True,
)
upload_video_button = gr.Button("Submit for recognition")
output_video = gr.Video(label="Output")
output_srt_file_video = gr.File(
label="Generated subtitles", show_label=True
)
output_info_video = gr.HTML(label="Info")
output_textbox_video = gr.Textbox(
label="Recognized speech from uploaded video file"
)
with gr.TabItem("Upload audio from disk"):
uploaded_audio_file = gr.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Upload audio from disk",
)
upload_audio_button = gr.Button("Submit for recognition")
output_srt_file_audio = gr.File(
label="Generated subtitles", show_label=True
)
output_info_audio = gr.HTML(label="Info")
output_textbox_audio = gr.Textbox(
label="Recognized speech from uploaded audio file"
)
upload_video_button.click(
process_uploaded_video_file,
inputs=[
language_radio,
model_dropdown,
uploaded_video_file,
],
outputs=[
output_video,
output_srt_file_video,
output_info_video,
output_textbox_video,
],
)
upload_audio_button.click(
process_uploaded_audio_file,
inputs=[
language_radio,
model_dropdown,
uploaded_audio_file,
],
outputs=[
output_srt_file_audio,
output_info_audio,
output_textbox_audio,
],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()