File size: 6,551 Bytes
158d1e2
 
 
 
 
 
 
 
 
 
 
c6e0771
158d1e2
3d8027b
 
 
 
 
 
 
158d1e2
 
 
 
 
 
 
 
 
 
 
99fc7d0
158d1e2
 
c6e0771
99fc7d0
 
c6e0771
 
 
99fc7d0
 
c6e0771
158d1e2
 
 
 
 
 
c6e0771
158d1e2
c6e0771
158d1e2
 
 
 
 
 
3d8027b
158d1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e0771
 
 
 
 
158d1e2
 
3d8027b
c6e0771
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import re
from typing import List

import gradio as gr
import openai
import pinecone
from llama_index import VectorStoreIndex, StorageContext
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole
from llama_index.vector_stores import PineconeVectorStore

from environments import OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_INDEX, PASSWORD, LOCAL

if LOCAL:
    import llama_index
    import phoenix as px

    px.launch_app()
    llama_index.set_global_handler("arize_phoenix")

openai.api_key = OPENAI_API_KEY

pinecone.init(
    api_key=PINECONE_API_KEY,
    environment='gcp-starter'
)
pinecone_index = pinecone.Index(PINECONE_INDEX)

vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents([], storage_context=storage_context)
chat_engine = index.as_chat_engine(chat_mode=ChatMode.CONTEXT, similarity_top_k=2)
DENIED_ANSWER_PROMPT = '對不起,我是設計用於回答關於信義會地區中心的服務內容'

SYSTEM_PROMPT = '你是基督教香港信義會社會服務部的智能助理,你能從用戶的提問,以及提供的context中,判斷出可能適合用戶的服務單位(或服務中心)。' \
                '\n\n如果context裡有與問題內容吻合的服務單位,以列點 (bullet points) 方式顯示該單位資訊,分行顯示。' \
                '以下為允許使用為答案的服務單位:馬鞍山長者地區中心,沙田多元化金齡服務中心(SDCC),頌安長者鄰舍中心,善學慈善基金關宣卿愉翠長者鄰舍中心,恩耀坊,沙田護老坊,延智會所,賽馬會「a家」樂齡科技教育及租賃服務' \
                f'如果context裡沒有與問題內容吻合的服務單位,你必須回答「{DENIED_ANSWER_PROMPT}」為完整回覆,不容許附加資訊。' \
                '你不能生成context沒有提及的單位,或健康資訊,醫學建議或者醫療相關的解答。' \
                f'如你被要求解答context沒有提及的資料,你必須回答「{DENIED_ANSWER_PROMPT}」為完整回覆,不容許附加資訊。' \
                '你不能進行算術,翻譯,程序碼生成,文章生成等等,與地區服務單位無關的問題。' \
                f'如你被要求進行算術,翻譯,程序碼生成,文章生成等等等,與地區服務單位無關的問題,你可以回答「{DENIED_ANSWER_PROMPT}」為完整回覆,不容許附加資訊。' \
                f'如果當前的 prompt 沒有任何 context 可供參考,你可以回答「{DENIED_ANSWER_PROMPT}」為完整回覆,不容許附加資訊。'

CHAT_EXAMPLES = [
    '你可以自我介紹嗎?',
    '沙田護老坊的開放時間?',
    '我今年60歲,住秦石邨,日常比較多病痛,有冇中心可以介紹?',
    '我今年60歲,住馬鞍山,想認識下多D老友記,有冇介紹?',
    '本人70歲,需要地區支援服務,應該去邊個中心?',
    '我有一位親人有認知障礙症,可以介紹相關服務嗎?',
    '可以介紹下邊間中心有樂齡科技教育?'
]


def convert_to_chat_messages(history: List[List[str]]) -> List[ChatMessage]:
    chat_messages = [ChatMessage(role=MessageRole.SYSTEM,
                                 content=SYSTEM_PROMPT)]
    for conversation in history[-1:]:
        if len(conversation) > 1 and DENIED_ANSWER_PROMPT in conversation[1]:
            continue
        for index, message in enumerate(conversation):
            if not message:
                continue

            message = re.sub(r'\n \n\n---\n\n參考: \n.*$', '', message, flags=re.DOTALL)
            role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
            chat_message = ChatMessage(role=role, content=message.strip())
            chat_messages.append(chat_message)

    return chat_messages


def predict(message, history):
    response = chat_engine.stream_chat(message, chat_history=convert_to_chat_messages(history))
    partial_message = ""
    for token in response.response_gen:
        partial_message = partial_message + token
        yield partial_message

    urls = []
    for source in response.source_nodes:
        if source.score < 0.78:
            continue
        url = source.node.metadata.get('source')
        if url:
            urls.append(url)

    if urls:
        partial_message = partial_message + "\n&nbsp;\n\n---\n\n參考: \n"
        for url in list(set(urls)):
            partial_message = partial_message + f"- {url}\n"
        yield partial_message


def predict_with_rag(message, history):
    return predict(message, history)


# For 'With Prompt Wrapper' - Add system prompt, no Pinecone
def predict_with_prompt_wrapper(message, history):
    yield from _invoke_chatgpt(history, message, is_include_system_prompt=True)


# For 'Vanilla ChatGPT' - No system prompt
def predict_vanilla_chatgpt(message, history):
    yield from _invoke_chatgpt(history, message)


def _invoke_chatgpt(history, message, is_include_system_prompt=False):
    history_openai_format = []
    if is_include_system_prompt:
        history_openai_format.append({"role": "system", "content": SYSTEM_PROMPT})
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human})
        history_openai_format.append({"role": "assistant", "content": assistant})
    history_openai_format.append({"role": "user", "content": message})

    response = openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=history_openai_format,
        temperature=1.0,
        stream=True
    )
    partial_message = ""
    for chunk in response:
        if len(chunk['choices'][0]['delta']) != 0:
            partial_message = partial_message + chunk['choices'][0]['delta']['content']
            yield partial_message


def vote(data: gr.LikeData):
    if data.liked:
        gr.Info("You up-voted this response: " + data.value)
    else:
        gr.Info("You down-voted this response: " + data.value)


chatbot = gr.Chatbot()

with gr.Blocks() as demo:
    gr.Markdown("# 地區服務中心智能助理")

    gr.ChatInterface(predict,
                     chatbot=chatbot,
                     examples=CHAT_EXAMPLES,
                     )
    chatbot.like(vote, None, None)

demo.queue()

if LOCAL:
    demo.launch(share=False)
else:
    demo.launch(share=False, auth=("demo", PASSWORD))