kipwise-llm / chatbot.py
cowcow02's picture
Upload folder using huggingface_hub
1ab26fb verified
import logging
import os
import re
from typing import List
import llama_index
import phoenix as px
from llama_index.llms import ChatMessage, MessageRole
from openai import OpenAI
from environments import OPENAI_API_KEY
class IndexBuilder:
def __init__(self, vdb_collection_name, embed_model, is_load_from_vector_store=False):
self.documents = None
self.vdb_collection_name = vdb_collection_name
self.embed_model = embed_model
self.index = None
self.is_load_from_vector_store = is_load_from_vector_store
self.build_index()
def _load_doucments(self):
pass
def _setup_service_context(self):
print("Using global service context...")
def _setup_vector_store(self):
print("Setup vector store...")
def _setup_index(self):
if not self.is_load_from_vector_store and self.documents is None:
raise ValueError("No documents provided for index building.")
print("Building Index")
def build_index(self):
if self.is_load_from_vector_store:
self._setup_service_context()
self._setup_vector_store()
self._setup_index()
return
self._load_doucments()
self._setup_service_context()
self._setup_vector_store()
self._setup_index()
class Chatbot:
SYSTEM_PROMPT = ""
DENIED_ANSWER_PROMPT = ""
CHAT_EXAMPLES = []
def __init__(self, model_name, index_builder: IndexBuilder, llm=None):
self.model_name = model_name
self.index_builder = index_builder
self.llm = llm
self.documents = None
self.index = None
self.chat_engine = None
self.service_context = None
self.vector_store = None
self.tools = None
self._setup_logger()
self._setup_chatbot()
def _setup_logger(self):
logs_dir = 'logs'
if not os.path.exists(logs_dir):
os.makedirs(logs_dir) # Step 3: Create logs directory
logging.basicConfig(
filename=os.path.join(logs_dir, 'chatbot.log'),
filemode='a',
format='%(asctime)s - %(levelname)s - %(message)s',
level=logging.INFO
)
self.logger = logging.getLogger(__name__)
def _setup_chatbot(self):
# self._setup_observer()
self._setup_index()
self._setup_query_engine()
self._setup_tools()
self._setup_chat_engine()
def _setup_observer(self):
px.launch_app()
llama_index.set_global_handler("arize_phoenix")
def _setup_index(self):
self.index = self.index_builder.index
print("Inherited index builder")
def _setup_query_engine(self):
if self.index is None:
raise ValueError("No index built")
pass
print("Setup query engine...")
def _setup_tools(self):
pass
print("Setup tools...")
def _setup_chat_engine(self):
if self.index is None:
raise ValueError("No index built")
pass
print("Setup chat engine...")
def stream_chat(self, message, history):
self.logger.info(history)
self.logger.info(self.convert_to_chat_messages(history))
response = self.chat_engine.stream_chat(
message, chat_history=self.convert_to_chat_messages(history)
)
# Stream tokens as they are generated
partial_message = ""
for token in response.response_gen:
partial_message += token
yield partial_message
references = {}
for source in response.source_nodes:
if source.score < 0.76:
continue
url = source.node.metadata.get('url')
title = source.node.metadata.get('title')
if url and title:
references[url] = title
if references:
partial_message = partial_message + "\n&nbsp;\n\n---\n\nSources: \n"
for url, title in references.items():
partial_message = partial_message + f"- [{title}]({url})\n"
yield partial_message
return partial_message
def convert_to_chat_messages(self, history: List[List[str]]) -> List[ChatMessage]:
chat_messages = [ChatMessage(
role=MessageRole.SYSTEM, content=self.SYSTEM_PROMPT)]
for conversation in history[-3:]:
for index, message in enumerate(conversation):
role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
clean_message = re.sub(
r"\n&nbsp;\n\n---\n\nSources: \n.*$", "", message, flags=re.DOTALL)
chat_messages.append(ChatMessage(
role=role, content=clean_message.strip()))
return chat_messages
def predict_with_rag(self, message, history):
return self.stream_chat(message, history)
# Vanilla chatgpt methods, shared across all chatbot instance
def _invoke_chatgpt(self, history, message, is_include_system_prompt=False):
openai_client = OpenAI(api_key=OPENAI_API_KEY)
history_openai_format = []
if is_include_system_prompt:
history_openai_format.append(
{"role": "system", "content": self.SYSTEM_PROMPT})
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append(
{"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
stream = openai_client.chat.completions.create(
model=self.model_name,
messages=history_openai_format,
temperature=1.0,
stream=True)
partial_message = ""
for part in stream:
partial_message += part.choices[0].delta.content or ""
yield partial_message
# For 'With Prompt Wrapper' - Add system prompt, no Pinecone
def predict_with_prompt_wrapper(self, message, history):
yield from self._invoke_chatgpt(history, message, is_include_system_prompt=True)
# For 'Vanilla ChatGPT' - No system prompt
def predict_vanilla_chatgpt(self, message, history):
yield from self._invoke_chatgpt(history, message)