Spaces:
Sleeping
Sleeping
File size: 6,447 Bytes
975a927 f3e0ba5 975a927 f3e0ba5 975a927 f3e0ba5 975a927 f3e0ba5 975a927 f3e0ba5 975a927 f3e0ba5 975a927 13be379 975a927 13be379 975a927 13be379 975a927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import datetime as dt
import streamlit as st
from streamlit.logger import get_logger
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from app_config import DB_SCHEMA, DB_COMPLETIONS, DB_CONVOS, DB_BATTLES, DB_ERRORS, DB_CPC, DB_BP, DB_TA
DB_URL = os.environ['MONGO_URL']
DB_USR = os.environ['MONGO_USR']
DB_PWD = os.environ['MONGO_PWD']
logger = get_logger(__name__)
def get_db_client():
uri = f"mongodb+srv://{DB_USR}:{DB_PWD}@{DB_URL}/?retryWrites=true&w=majority"
# Create a new client and connect to the server
client = MongoClient(uri, server_api=ServerApi('1'))
# Send a ping to confirm a successful connection
try:
client.admin.command('ping')
logger.debug(f"DBUTILS: Pinged your deployment. You successfully connected to MongoDB!")
return client
except Exception as e:
logger.error(e)
def new_convo(client, issue, language, username, is_comparison, model_one, model_two=None):
convo = {
"start_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"issue": issue,
"language": language,
"username": username,
"is_comparison": is_comparison,
"model_one": model_one,
"model_two": model_two,
}
db = client[DB_SCHEMA]
convos = db[DB_CONVOS]
convo_id = convos.insert_one(convo).inserted_id
logger.debug(f"DBUTILS: new convo id is {convo_id}")
st.session_state['convo_id'] = convo_id
def new_comparison(client, prompt_timestamp, completion_timestamp,
chat_history, prompt, completionA, completionB,
source="webapp", subset=None
):
comparison = {
"prompt_timestamp": prompt_timestamp,
"completion_timestamp": completion_timestamp,
"source": source,
"subset": subset,
"model_one_args": {
'temperature':0.8
},
"model_two_args": {
'temperature':0.8
},
"convo_id": st.session_state['convo_id'],
"chat_history": chat_history,
"prompt": prompt,
"compeltion_model_one": completionA,
"compeltion_model_two": completionB,
}
db = client[DB_SCHEMA]
comparisons = db[DB_COMPLETIONS]
comparison_id = comparisons.insert_one(comparison).inserted_id
logger.debug(f"DBUTILS: new comparison id is {comparison_id}")
st.session_state['comparison_id'] = comparison_id
def new_battle_result(client, comparison_id, convo_id, username, model_one, model_two, winner):
battle = {
"battle_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"comparison_id": comparison_id,
"convo_id": convo_id,
"username": username,
"model_one": model_one,
"model_two": model_two,
"winner": winner,
}
db = client[DB_SCHEMA]
battles = db[DB_BATTLES]
battle_id = battles.insert_one(battle).inserted_id
logger.debug(f"DBUTILS: new battle id is {battle_id}")
def new_completion_error(client, comparison_id, username, model):
error = {
"error_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"comparison_id": comparison_id,
"username": username,
"model": model,
}
db = client[DB_SCHEMA]
errors = db[DB_ERRORS]
error_id = errors.insert_one(error).inserted_id
logger.debug(f"DBUTILS: new error id is {error_id}")
def new_cpc_comparison(client, convo_id, model, context, last_message, ytrue, ypred):
# context = memory.load_memory_variables({})[memory.memory_key]
comp = {
"CPC_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"conversation_id": convo_id,
"model": model,
"context": context,
"last_message": last_message,
"predicted_phase": ypred,
"manual_phase": ytrue,
}
db = client[DB_SCHEMA]
cpc_comps = db[DB_CPC]
comarison_id = cpc_comps.insert_one(comp).inserted_id
logger.debug(f"DBUTILS: new error id is {comarison_id}")
def new_bp_comparison(client, convo_id, model, context, last_message, ytrue, ypred):
# context = memory.load_memory_variables({})[memory.memory_key]
comp = {
"BP_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"conversation_id": convo_id,
"model": model,
"context": context,
"last_message": last_message,
"is_advice": ypred["is_advice"],
"manual_is_advice": ytrue["is_advice"],
"is_pi": ypred["is_personal_info"],
"manual_is_pi": ytrue["is_personal_info"],
}
db = client[DB_SCHEMA]
bp_comps = db[DB_BP]
comarison_id = bp_comps.insert_one(comp).inserted_id
logger.debug(f"DBUTILS: new BP id is {comarison_id}")
def new_convo_scoring_comparison(client, convo_id, context, ytrue, ypred):
# context = memory.load_memory_variables({})[memory.memory_key]
comp = {
"scoring_timestamp": dt.datetime.now(tz=dt.timezone.utc),
"conversation_id": convo_id,
"context": context,
"manual_scoring": ytrue,
"model_scoring": ypred,
}
db = client[DB_SCHEMA]
ta_comps = db[DB_TA]
comarison_id = ta_comps.insert_one(comp).inserted_id
logger.debug(f"DBUTILS: new TA convo comparison id is {comarison_id}")
def get_non_assesed_comparison(client, username):
from bson.son import SON
pipeline = [
{'$lookup': {
'from': DB_BATTLES,
'localField': '_id',
'foreignField': 'comparison_id',
"pipeline": [
{"$match": {"username":username}},
],
'as': 'battles'
}},
{'$lookup': {
'from': DB_CONVOS,
'localField': 'convo_id',
'foreignField': '_id',
'as': 'convo_info'
}},
{"$match":{
"battles": {"$size":0},
}},
{"$addFields": {
"is_manual": {
"$cond":[
{"$eq": ["$source","manual"]},
1,
0
]
},
"is_eval":{
"$cond":[
{"$eq": ["$subset","eval"]},
1,
0
]
},
"priority": {"$sum": ["is_manual","is_eval"]}
}},
{"$sort": SON([
("priority", -1),
("prompt_timestamp", 1),
("convo_id", 1),
])
},
{"$limit": 1}
]
db = client[DB_SCHEMA]
return list(db[DB_COMPLETIONS].aggregate(pipeline))
|