Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from streamlit.logger import get_logger | |
import os | |
import requests | |
from app_config import ENDPOINT_NAMES | |
from utils.memory_utils import change_memories | |
from models.model_seeds import seeds | |
logger = get_logger(__name__) | |
# TODO: Include more variable and representative names | |
DEFAULT_NAMES = ["Olivia", "Kit", "Abby", "Tom", "Carolyne", "Jessiny"] | |
DEFAULT_NAMES_DF = pd.read_csv("./utils/names.csv") | |
HEADERS = { | |
"Authorization": f"Bearer {os.environ['DATABRICKS_TOKEN']}", | |
"Content-Type": "application/json", | |
} | |
def get_random_name(gender="Neutral", ethnical_group="Neutral", names_df=None): | |
if names_df is None: | |
names_df = pd.DataFrame(DEFAULT_NAMES, columns=['name']) | |
names_df["gender"] = "Neutral" | |
names_df["ethnical_group"] = "Neutral" | |
dfi = names_df | |
if gender != "Neutral": | |
dfi = dfi.query(f"gender=='{gender}'") | |
if ethnical_group != "Neutral": | |
dfi = dfi.query(f"ethnical_group=='{ethnical_group}'") | |
if len(dfi) <=0 : | |
dfi = names_df | |
return dfi.sample(1)['name'].values[0] | |
def divide_messages(str_memory, str_ai_prefix="texter", str_human_prefix="helper", include_colon=True): | |
message_delimiter = "$%$" | |
# Split str memory in messaages according to previous prefix and flatten list | |
colon = ":" if include_colon else "" | |
str_memory = f"{message_delimiter}{str_ai_prefix}{colon}".join(str_memory.split(f"{str_ai_prefix}{colon}")) | |
str_memory = f"{message_delimiter}{str_human_prefix}{colon}".join(str_memory.split(f"{str_human_prefix}{colon}")) | |
return str_memory.split(message_delimiter) | |
def add_initial_message(issue, language, memory, str_ai_prefix="texter", str_human_prefix="helper", include_colon=True, | |
texter_name="", counselor_name=""): | |
initial_mem_str = seeds.get(issue, "GCT")['memory'].format(counselor_name=counselor_name, texter_name=texter_name) | |
message_list = divide_messages(initial_mem_str, str_ai_prefix, str_human_prefix, include_colon) | |
colon = ":" if include_colon else "" | |
for i, message in enumerate(message_list): | |
message = message.strip("\n") | |
message = message.strip() | |
if message is None or message == "": | |
pass | |
elif message.startswith(str_human_prefix): | |
memory.chat_memory.add_user_message(message.lstrip(f"{str_human_prefix}{colon}").strip()) | |
elif message.startswith(str_ai_prefix): | |
memory.chat_memory.add_ai_message(message.lstrip(f"{str_ai_prefix}{colon}").strip()) | |
def create_memory_add_initial_message(memories, issue, language, changed_source=False, texter_name="", counselor_name=""): | |
change_memories(memories, language, changed_source=changed_source) | |
for memory, _ in memories.items(): | |
if len(st.session_state[memory].buffer_as_messages) < 1: | |
add_initial_message(issue, language, st.session_state[memory], texter_name=texter_name, counselor_name=counselor_name) | |
def is_model_alive(name, timeout=2, model_type="classificator"): | |
if model_type!="openai": | |
endpoint_url=os.environ['DATABRICKS_URL'].format(endpoint_name=name) | |
headers = HEADERS | |
if model_type == "classificator": | |
body_request = { | |
"inputs": [""] | |
} | |
elif model_type == "text-completion": | |
body_request = { | |
"prompt": "", | |
"temperature": 0, | |
"max_tokens": 1, | |
} | |
elif model_type == "text-generation": | |
body_request = { | |
"messages": [{"role":"user","content":""}], | |
"max_tokens": 1, | |
"temperature": 0 | |
} | |
else: | |
raise Exception(f"Model Type {model_type} not supported") | |
try: | |
response = requests.post(url=endpoint_url, headers=HEADERS, json=body_request, timeout=timeout) | |
return str(response.status_code) | |
except: | |
return "404" | |
else: | |
endpoint_url="https://api.openai.com/v1/models" | |
headers = {"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}",} | |
try: | |
response = requests.get(url=endpoint_url, headers=headers, timeout=1) | |
return str(response.status_code) | |
except: | |
return "404" | |
def are_models_alive(): | |
models_alive = [] | |
for config in ENDPOINT_NAMES.values(): | |
models_alive.append(is_model_alive(**config)) | |
openai = is_model_alive("openai", model_type="openai") | |
models_alive.append(openai) | |
return all([x=="200" for x in models_alive]) |