JeffreyXiang commited on
Commit
9880f3d
·
1 Parent(s): f92f037
app.py CHANGED
@@ -4,11 +4,14 @@ from gradio_litmodel3d import LitModel3D
4
 
5
  import os
6
  from typing import *
 
7
  import numpy as np
8
  import imageio
9
  import uuid
 
10
  from PIL import Image
11
  from trellis.pipelines import TrellisImageTo3DPipeline
 
12
  from trellis.utils import render_utils, postprocessing_utils
13
 
14
 
@@ -25,6 +28,47 @@ def preprocess_image(image: Image.Image) -> Image.Image:
25
  return pipeline.preprocess_image(image)
26
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  @spaces.GPU
29
  def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
30
  """
@@ -43,25 +87,26 @@ def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
43
  video_path = f"/tmp/Trellis-demo/{model_id}.mp4"
44
  os.makedirs(os.path.dirname(video_path), exist_ok=True)
45
  imageio.mimsave(video_path, video, fps=15)
46
- model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id}
47
- return model, video_path
48
 
49
 
50
  @spaces.GPU
51
- def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
52
  """
53
  Extract a GLB file from the 3D model.
54
 
55
  Args:
56
- model (dict): The generated 3D model.
57
  mesh_simplify (float): The mesh simplification factor.
58
  texture_size (int): The texture resolution.
59
 
60
  Returns:
61
  str: The path to the extracted GLB file.
62
  """
63
- glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size)
64
- glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb"
 
65
  glb.export(glb_path)
66
  return glb_path, glb_path
67
 
 
4
 
5
  import os
6
  from typing import *
7
+ import torch
8
  import numpy as np
9
  import imageio
10
  import uuid
11
+ from easydict import EasyDict as edict
12
  from PIL import Image
13
  from trellis.pipelines import TrellisImageTo3DPipeline
14
+ from trellis.representations import Gaussian, MeshExtractResult
15
  from trellis.utils import render_utils, postprocessing_utils
16
 
17
 
 
28
  return pipeline.preprocess_image(image)
29
 
30
 
31
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
32
+ return {
33
+ 'gaussian': {
34
+ **gs.init_params,
35
+ '_xyz': gs._xyz.cpu().numpy(),
36
+ '_features_dc': gs._features_dc.cpu().numpy(),
37
+ '_scaling': gs._scaling.cpu().numpy(),
38
+ '_rotation': gs._rotation.cpu().numpy(),
39
+ '_opacity': gs._opacity.cpu().numpy(),
40
+ },
41
+ 'mesh': {
42
+ 'vertices': mesh.vertices.cpu().numpy(),
43
+ 'faces': mesh.faces.cpu().numpy(),
44
+ },
45
+ 'model_id': model_id,
46
+ }
47
+
48
+
49
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
50
+ gs = Gaussian(
51
+ aabb=state['gaussian']['aabb'],
52
+ sh_degree=state['gaussian']['sh_degree'],
53
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
54
+ scaling_bias=state['gaussian']['scaling_bias'],
55
+ opacity_bias=state['gaussian']['opacity_bias'],
56
+ scaling_activation=state['gaussian']['scaling_activation'],
57
+ )
58
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
59
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
60
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
61
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
62
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
63
+
64
+ mesh = edict(
65
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
66
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
67
+ )
68
+
69
+ return gs, mesh, state['model_id']
70
+
71
+
72
  @spaces.GPU
73
  def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
74
  """
 
87
  video_path = f"/tmp/Trellis-demo/{model_id}.mp4"
88
  os.makedirs(os.path.dirname(video_path), exist_ok=True)
89
  imageio.mimsave(video_path, video, fps=15)
90
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], model_id)
91
+ return state, video_path
92
 
93
 
94
  @spaces.GPU
95
+ def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
96
  """
97
  Extract a GLB file from the 3D model.
98
 
99
  Args:
100
+ state (dict): The state of the generated 3D model.
101
  mesh_simplify (float): The mesh simplification factor.
102
  texture_size (int): The texture resolution.
103
 
104
  Returns:
105
  str: The path to the extracted GLB file.
106
  """
107
+ gs, mesh, model_id = unpack_state(state)
108
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size)
109
+ glb_path = f"/tmp/Trellis-demo/{model_id}.glb"
110
  glb.export(glb_path)
111
  return glb_path, glb_path
112
 
trellis/representations/gaussian/gaussian_model.py CHANGED
@@ -15,6 +15,15 @@ class Gaussian:
15
  scaling_activation : str = "exp",
16
  device='cuda'
17
  ):
 
 
 
 
 
 
 
 
 
18
  self.sh_degree = sh_degree
19
  self.active_sh_degree = sh_degree
20
  self.mininum_kernel_size = mininum_kernel_size
 
15
  scaling_activation : str = "exp",
16
  device='cuda'
17
  ):
18
+ self.init_params = {
19
+ 'aabb': aabb,
20
+ 'sh_degree': sh_degree,
21
+ 'mininum_kernel_size': mininum_kernel_size,
22
+ 'scaling_bias': scaling_bias,
23
+ 'opacity_bias': opacity_bias,
24
+ 'scaling_activation': scaling_activation,
25
+ }
26
+
27
  self.sh_degree = sh_degree
28
  self.active_sh_degree = sh_degree
29
  self.mininum_kernel_size = mininum_kernel_size