|
import gradio as gr |
|
import os |
|
import platform |
|
from helper import CoreMLPipeline |
|
|
|
force_tf = os.environ.get('FORCE_TF', False) |
|
auth_key = os.environ.get('HF_TOKEN', True) |
|
|
|
config = { "coreml_extractor_repoid":"crossprism/efficientnetv2-21k-fv-m", |
|
"coreml_extractor_path":"efficientnetV2M21kExtractor.mlmodel", |
|
"tf_extractor_repoid":"crossprism/efficientnetv2-21k-fv-m-tf", |
|
"tf_extractor_path":"efficientnetv2-21k-fv-m", |
|
"coreml_classifier_repoid":"crossprism/travel_na_landmarks", |
|
"coreml_classifier_path":"LandmarksNAHead_quant8.mlpackage/Data/com.apple.CoreML/efficientnetV2M21kNALandmarksHead_quant8.mlmodel", |
|
"activation":"softmax" |
|
} |
|
use_tf = force_tf or (platform.system() != 'Darwin') |
|
|
|
helper = CoreMLPipeline(config, auth_key, use_tf) |
|
|
|
def classify_image(image): |
|
resized = image.resize((480,480)) |
|
return helper.classify(resized) |
|
|
|
image = gr.Image(type='pil') |
|
label = gr.Label(num_top_classes=3) |
|
|
|
gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = [["test1.jpg"],["test2.webp"],["test3.jpg"]]).launch() |
|
|
|
|