csukuangfj commited on
Commit
b8e6a49
·
1 Parent(s): 6f931c6

First commit

Browse files
Files changed (5) hide show
  1. app.py +206 -0
  2. decode.py +121 -0
  3. model.py +211 -0
  4. offline_asr.py +427 -0
  5. requirements.txt +13 -0
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ #
3
+ # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
4
+ #
5
+ # See LICENSE for clarification regarding multiple authors
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ # References:
20
+ # https://gradio.app/docs/#dropdown
21
+
22
+ import logging
23
+ import os
24
+ import time
25
+ from datetime import datetime
26
+
27
+ import gradio as gr
28
+ import torchaudio
29
+
30
+ from model import get_pretrained_model, language_to_models, sample_rate
31
+
32
+ languages = sorted(language_to_models.keys())
33
+
34
+
35
+ def convert_to_wav(in_filename: str) -> str:
36
+ """Convert the input audio file to a wave file"""
37
+ out_filename = in_filename + ".wav"
38
+ logging.info(f"Converting '{in_filename}' to '{out_filename}'")
39
+ _ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' '{out_filename}'")
40
+ return out_filename
41
+
42
+
43
+ def process(
44
+ in_filename: str,
45
+ language: str,
46
+ repo_id: str,
47
+ decoding_method: str,
48
+ num_active_paths: int,
49
+ ) -> str:
50
+ logging.info(f"in_filename: {in_filename}")
51
+ logging.info(f"language: {language}")
52
+ logging.info(f"repo_id: {repo_id}")
53
+ logging.info(f"decoding_method: {decoding_method}")
54
+ logging.info(f"num_active_paths: {num_active_paths}")
55
+
56
+ filename = convert_to_wav(in_filename)
57
+
58
+ now = datetime.now()
59
+ date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
60
+ logging.info(f"Started at {date_time}")
61
+
62
+ start = time.time()
63
+ wave, wave_sample_rate = torchaudio.load(filename)
64
+
65
+ if wave_sample_rate != sample_rate:
66
+ logging.info(
67
+ f"Expected sample rate: {sample_rate}. Given: {wave_sample_rate}. "
68
+ f"Resampling to {sample_rate}."
69
+ )
70
+
71
+ wave = torchaudio.functional.resample(
72
+ wave,
73
+ orig_freq=wave_sample_rate,
74
+ new_freq=sample_rate,
75
+ )
76
+ wave = wave[0] # use only the first channel.
77
+
78
+ hyp = get_pretrained_model(repo_id).decode_waves(
79
+ [wave],
80
+ decoding_method=decoding_method,
81
+ num_active_paths=num_active_paths,
82
+ )[0]
83
+
84
+ date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
85
+ end = time.time()
86
+
87
+ duration = wave.shape[0] / sample_rate
88
+ rtf = (end - start) / duration
89
+
90
+ logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
91
+ logging.info(f"Duration {duration: .3f} s")
92
+ logging.info(f"RTF {rtf: .3f}")
93
+ logging.info(f"hyp:\n{hyp}")
94
+
95
+ return hyp
96
+
97
+
98
+ title = "# Automatic Speech Recognition with Next-gen Kaldi"
99
+ description = """
100
+ This space shows how to do automatic speech recognition with Next-gen Kaldi.
101
+
102
+ See more information by visiting the following links:
103
+
104
+ - <https://github.com/k2-fsa/icefall>
105
+ - <https://github.com/k2-fsa/sherpa>
106
+ - <https://github.com/k2-fsa/k2>
107
+ - <https://github.com/lhotse-speech/lhotse>
108
+ """
109
+
110
+
111
+ def update_model_dropdown(language: str):
112
+ if language in language_to_models:
113
+ choices = language_to_models[language]
114
+ return gr.Dropdown.update(choices=choices, value=choices[0])
115
+
116
+ raise ValueError(f"Unsupported language: {language}")
117
+
118
+
119
+ demo = gr.Blocks()
120
+
121
+ with demo:
122
+ gr.Markdown(title)
123
+ language_choices = list(language_to_models.keys())
124
+
125
+ language_radio = gr.Radio(
126
+ label="Language",
127
+ choices=language_choices,
128
+ value=language_choices[0],
129
+ )
130
+ model_dropdown = gr.Dropdown(
131
+ choices=language_to_models[language_choices[0]],
132
+ label="Select a model",
133
+ value=language_to_models[language_choices[0]][0],
134
+ )
135
+
136
+ language_radio.change(
137
+ update_model_dropdown,
138
+ inputs=language_radio,
139
+ outputs=model_dropdown,
140
+ )
141
+
142
+ decoding_method_radio = gr.Radio(
143
+ label="Decoding method",
144
+ choices=["greedy_search", "modified_beam_search"],
145
+ value="greedy_search",
146
+ )
147
+
148
+ num_active_paths_slider = gr.Slider(
149
+ minimum=1,
150
+ value=4,
151
+ step=1,
152
+ label="Number of active paths for modified_beam_search",
153
+ )
154
+
155
+ with gr.Tabs():
156
+ with gr.TabItem("Upload from disk"):
157
+ uploaded_file = gr.Audio(
158
+ source="upload", # Choose between "microphone", "upload"
159
+ type="filepath",
160
+ optional=False,
161
+ label="Upload from disk",
162
+ )
163
+ upload_button = gr.Button("Submit for recognition")
164
+ uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
165
+
166
+ with gr.TabItem("Record from microphone"):
167
+ microphone = gr.Audio(
168
+ source="microphone", # Choose between "microphone", "upload"
169
+ type="filepath",
170
+ optional=False,
171
+ label="Record from microphone",
172
+ )
173
+
174
+ record_button = gr.Button("Submit for recognition")
175
+ recorded_output = gr.Textbox(label="Recognized speech from recordings")
176
+
177
+ upload_button.click(
178
+ process,
179
+ inputs=[
180
+ uploaded_file,
181
+ language_radio,
182
+ model_dropdown,
183
+ decoding_method_radio,
184
+ num_active_paths_slider,
185
+ ],
186
+ outputs=uploaded_output,
187
+ )
188
+ record_button.click(
189
+ process,
190
+ inputs=[
191
+ microphone,
192
+ language_radio,
193
+ model_dropdown,
194
+ decoding_method_radio,
195
+ num_active_paths_slider,
196
+ ],
197
+ outputs=recorded_output,
198
+ )
199
+ gr.Markdown(description)
200
+
201
+ if __name__ == "__main__":
202
+ formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
203
+
204
+ logging.basicConfig(format=formatter, level=logging.INFO)
205
+
206
+ demo.launch()
decode.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
2
+ #
3
+ # Copied from https://github.com/k2-fsa/sherpa/blob/master/sherpa/bin/conformer_rnnt/decode.py
4
+ #
5
+ # See LICENSE for clarification regarding multiple authors
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ import math
20
+ from typing import List
21
+
22
+ import torch
23
+ from sherpa import RnntConformerModel, greedy_search, modified_beam_search
24
+ from torch.nn.utils.rnn import pad_sequence
25
+
26
+ LOG_EPS = math.log(1e-10)
27
+
28
+
29
+ @torch.no_grad()
30
+ def run_model_and_do_greedy_search(
31
+ model: RnntConformerModel,
32
+ features: List[torch.Tensor],
33
+ ) -> List[List[int]]:
34
+ """Run RNN-T model with the given features and use greedy search
35
+ to decode the output of the model.
36
+
37
+ Args:
38
+ model:
39
+ The RNN-T model.
40
+ features:
41
+ A list of 2-D tensors. Each entry is of shape
42
+ (num_frames, feature_dim).
43
+ Returns:
44
+ Return a list-of-list containing the decoding token IDs.
45
+ """
46
+ features_length = torch.tensor(
47
+ [f.size(0) for f in features],
48
+ dtype=torch.int64,
49
+ )
50
+ features = pad_sequence(
51
+ features,
52
+ batch_first=True,
53
+ padding_value=LOG_EPS,
54
+ )
55
+
56
+ device = model.device
57
+ features = features.to(device)
58
+ features_length = features_length.to(device)
59
+
60
+ encoder_out, encoder_out_length = model.encoder(
61
+ features=features,
62
+ features_length=features_length,
63
+ )
64
+
65
+ hyp_tokens = greedy_search(
66
+ model=model,
67
+ encoder_out=encoder_out,
68
+ encoder_out_length=encoder_out_length.cpu(),
69
+ )
70
+ return hyp_tokens
71
+
72
+
73
+ @torch.no_grad()
74
+ def run_model_and_do_modified_beam_search(
75
+ model: RnntConformerModel,
76
+ features: List[torch.Tensor],
77
+ num_active_paths: int,
78
+ ) -> List[List[int]]:
79
+ """Run RNN-T model with the given features and use greedy search
80
+ to decode the output of the model.
81
+
82
+ Args:
83
+ model:
84
+ The RNN-T model.
85
+ features:
86
+ A list of 2-D tensors. Each entry is of shape
87
+ (num_frames, feature_dim).
88
+ num_active_paths:
89
+ Used only when decoding_method is modified_beam_search.
90
+ It specifies number of active paths for each utterance. Due to
91
+ merging paths with identical token sequences, the actual number
92
+ may be less than "num_active_paths".
93
+ Returns:
94
+ Return a list-of-list containing the decoding token IDs.
95
+ """
96
+ features_length = torch.tensor(
97
+ [f.size(0) for f in features],
98
+ dtype=torch.int64,
99
+ )
100
+ features = pad_sequence(
101
+ features,
102
+ batch_first=True,
103
+ padding_value=LOG_EPS,
104
+ )
105
+
106
+ device = model.device
107
+ features = features.to(device)
108
+ features_length = features_length.to(device)
109
+
110
+ encoder_out, encoder_out_length = model.encoder(
111
+ features=features,
112
+ features_length=features_length,
113
+ )
114
+
115
+ hyp_tokens = modified_beam_search(
116
+ model=model,
117
+ encoder_out=encoder_out,
118
+ encoder_out_length=encoder_out_length.cpu(),
119
+ num_active_paths=num_active_paths,
120
+ )
121
+ return hyp_tokens
model.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
2
+ #
3
+ # See LICENSE for clarification regarding multiple authors
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ from huggingface_hub import hf_hub_download
18
+ from functools import lru_cache
19
+
20
+
21
+ from offline_asr import OfflineAsr
22
+
23
+ sample_rate = 16000
24
+
25
+
26
+ @lru_cache(maxsize=30)
27
+ def get_pretrained_model(repo_id: str) -> OfflineAsr:
28
+ if repo_id in chinese_models:
29
+ return chinese_models[repo_id](repo_id)
30
+ elif repo_id in english_models:
31
+ return english_models[repo_id](repo_id)
32
+ elif repo_id in chinese_english_mixed_models:
33
+ return chinese_english_mixed_models[repo_id](repo_id)
34
+ else:
35
+ raise ValueError(f"Unsupported repo_id: {repo_id}")
36
+
37
+
38
+ def _get_nn_model_filename(
39
+ repo_id: str,
40
+ filename: str,
41
+ subfolder: str = "exp",
42
+ ) -> str:
43
+ nn_model_filename = hf_hub_download(
44
+ repo_id=repo_id,
45
+ filename=filename,
46
+ subfolder=subfolder,
47
+ )
48
+ return nn_model_filename
49
+
50
+
51
+ def _get_bpe_model_filename(
52
+ repo_id: str,
53
+ filename: str = "bpe.model",
54
+ subfolder: str = "data/lang_bpe_500",
55
+ ) -> str:
56
+ bpe_model_filename = hf_hub_download(
57
+ repo_id=repo_id,
58
+ filename=filename,
59
+ subfolder=subfolder,
60
+ )
61
+ return bpe_model_filename
62
+
63
+
64
+ def _get_token_filename(
65
+ repo_id: str,
66
+ filename: str = "tokens.txt",
67
+ subfolder: str = "data/lang_char",
68
+ ) -> str:
69
+ token_filename = hf_hub_download(
70
+ repo_id=repo_id,
71
+ filename=filename,
72
+ subfolder=subfolder,
73
+ )
74
+ return token_filename
75
+
76
+
77
+ @lru_cache(maxsize=10)
78
+ def _get_aishell2_pretrained_model(repo_id: str) -> OfflineAsr:
79
+ assert repo_id in [
80
+ # context-size 1
81
+ "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
82
+ # context-size 2
83
+ "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
84
+ ]
85
+
86
+ nn_model_filename = _get_nn_model_filename(
87
+ repo_id=repo_id,
88
+ filename="cpu_jit.pt",
89
+ )
90
+ token_filename = _get_token_filename(repo_id=repo_id)
91
+
92
+ return OfflineAsr(
93
+ nn_model_filename=nn_model_filename,
94
+ bpe_model_filename=None,
95
+ token_filename=token_filename,
96
+ sample_rate=sample_rate,
97
+ device="cpu",
98
+ )
99
+
100
+
101
+ @lru_cache(maxsize=10)
102
+ def _get_gigaspeech_pre_trained_model(repo_id: str) -> OfflineAsr:
103
+ assert repo_id in [
104
+ "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
105
+ ]
106
+
107
+ nn_model_filename = _get_nn_model_filename(
108
+ # It is converted from https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2 # noqa
109
+ repo_id="csukuangfj/icefall-asr-gigaspeech-pruned-transducer-stateless2", # noqa
110
+ filename="cpu_jit-epoch-29-avg-11-torch-1.10.0.pt",
111
+ )
112
+ bpe_model_filename = _get_bpe_model_filename(repo_id=repo_id)
113
+
114
+ return OfflineAsr(
115
+ nn_model_filename=nn_model_filename,
116
+ bpe_model_filename=bpe_model_filename,
117
+ token_filename=None,
118
+ sample_rate=sample_rate,
119
+ device="cpu",
120
+ )
121
+
122
+
123
+ @lru_cache(maxsize=10)
124
+ def _get_librispeech_pre_trained_model(repo_id: str) -> OfflineAsr:
125
+ assert repo_id in [
126
+ "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
127
+ ]
128
+
129
+ nn_model_filename = _get_nn_model_filename(
130
+ repo_id=repo_id,
131
+ filename="cpu_jit.pt",
132
+ )
133
+ bpe_model_filename = _get_bpe_model_filename(repo_id=repo_id)
134
+
135
+ return OfflineAsr(
136
+ nn_model_filename=nn_model_filename,
137
+ bpe_model_filename=bpe_model_filename,
138
+ token_filename=None,
139
+ sample_rate=sample_rate,
140
+ device="cpu",
141
+ )
142
+
143
+
144
+ @lru_cache(maxsize=10)
145
+ def _get_wenetspeech_pre_trained_model(repo_id: str):
146
+ assert repo_id in [
147
+ "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
148
+ ]
149
+
150
+ nn_model_filename = _get_nn_model_filename(
151
+ repo_id=repo_id,
152
+ filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
153
+ )
154
+ token_filename = _get_token_filename(repo_id=repo_id)
155
+
156
+ return OfflineAsr(
157
+ nn_model_filename=nn_model_filename,
158
+ bpe_model_filename=None,
159
+ token_filename=token_filename,
160
+ sample_rate=sample_rate,
161
+ device="cpu",
162
+ )
163
+
164
+
165
+ @lru_cache(maxsize=10)
166
+ def _get_tal_csasr_pre_trained_model(repo_id: str):
167
+ assert repo_id in [
168
+ "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
169
+ ]
170
+
171
+ nn_model_filename = _get_nn_model_filename(
172
+ repo_id=repo_id,
173
+ filename="cpu_jit.pt",
174
+ )
175
+ token_filename = _get_token_filename(repo_id=repo_id)
176
+
177
+ return OfflineAsr(
178
+ nn_model_filename=nn_model_filename,
179
+ bpe_model_filename=None,
180
+ token_filename=token_filename,
181
+ sample_rate=sample_rate,
182
+ device="cpu",
183
+ )
184
+
185
+
186
+ chinese_models = {
187
+ "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa
188
+ "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa
189
+ "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
190
+ }
191
+
192
+ english_models = {
193
+ "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa
194
+ "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_librispeech_pre_trained_model, # noqa
195
+ }
196
+
197
+ chinese_english_mixed_models = {
198
+ "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_tal_csasr_pre_trained_model, # noqa
199
+ }
200
+
201
+ all_models = {
202
+ **chinese_models,
203
+ **english_models,
204
+ **chinese_english_mixed_models,
205
+ }
206
+
207
+ language_to_models = {
208
+ "Chinese": sorted(chinese_models.keys()),
209
+ "English": sorted(english_models.keys()),
210
+ "Chinese+English": sorted(chinese_english_mixed_models.keys()),
211
+ }
offline_asr.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
3
+ #
4
+ # Copied from https://github.com/k2-fsa/sherpa/blob/master/sherpa/bin/conformer_rnnt/offline_asr.py
5
+ #
6
+ # See LICENSE for clarification regarding multiple authors
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """
20
+ A standalone script for offline ASR recognition.
21
+
22
+ It loads a torchscript model, decodes the given wav files, and exits.
23
+
24
+ Usage:
25
+ ./offline_asr.py --help
26
+
27
+ For BPE based models (e.g., LibriSpeech):
28
+
29
+ ./offline_asr.py \
30
+ --nn-model-filename /path/to/cpu_jit.pt \
31
+ --bpe-model-filename /path/to/bpe.model \
32
+ --decoding-method greedy_search \
33
+ ./foo.wav \
34
+ ./bar.wav \
35
+ ./foobar.wav
36
+
37
+ For character based models (e.g., aishell):
38
+
39
+ ./offline.py \
40
+ --nn-model-filename /path/to/cpu_jit.pt \
41
+ --token-filename /path/to/lang_char/tokens.txt \
42
+ --decoding-method greedy_search \
43
+ ./foo.wav \
44
+ ./bar.wav \
45
+ ./foobar.wav
46
+
47
+ Note: We provide pre-trained models for testing.
48
+
49
+ (1) Pre-trained model with the LibriSpeech dataset
50
+
51
+ sudo apt-get install git-lfs
52
+ git lfs install
53
+ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
54
+
55
+ nn_model_filename=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/cpu_jit-torch-1.6.0.pt
56
+ bpe_model=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model
57
+
58
+ wav1=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav
59
+ wav2=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav
60
+ wav3=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav
61
+
62
+ sherpa/bin/conformer_rnnt/offline_asr.py \
63
+ --nn-model-filename $nn_model_filename \
64
+ --bpe-model $bpe_model \
65
+ $wav1 \
66
+ $wav2 \
67
+ $wav3
68
+
69
+ (2) Pre-trained model with the aishell dataset
70
+
71
+ sudo apt-get install git-lfs
72
+ git lfs install
73
+ git clone https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
74
+
75
+ nn_model_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/exp/cpu_jit-epoch-29-avg-5-torch-1.6.0.pt
76
+ token_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/data/lang_char/tokens.txt
77
+
78
+ wav1=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0121.wav
79
+ wav2=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0122.wav
80
+ wav3=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0123.wav
81
+
82
+ sherpa/bin/conformer_rnnt/offline_asr.py \
83
+ --nn-model-filename $nn_model_filename \
84
+ --token-filename $token_filename \
85
+ $wav1 \
86
+ $wav2 \
87
+ $wav3
88
+ """
89
+ import argparse
90
+ import functools
91
+ import logging
92
+ from typing import List, Optional, Union
93
+
94
+ import k2
95
+ import kaldifeat
96
+ import sentencepiece as spm
97
+ import torch
98
+ import torchaudio
99
+ from sherpa import RnntConformerModel
100
+
101
+ from decode import run_model_and_do_greedy_search, run_model_and_do_modified_beam_search
102
+
103
+
104
+ def get_args():
105
+ parser = argparse.ArgumentParser(
106
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
107
+ )
108
+
109
+ parser.add_argument(
110
+ "--nn-model-filename",
111
+ type=str,
112
+ help="""The torchscript model. You can use
113
+ icefall/egs/librispeech/ASR/pruned_transducer_statelessX/export.py \
114
+ --jit=1
115
+ to generate this model.
116
+ """,
117
+ )
118
+
119
+ parser.add_argument(
120
+ "--bpe-model-filename",
121
+ type=str,
122
+ help="""The BPE model
123
+ You can find it in the directory egs/librispeech/ASR/data/lang_bpe_xxx
124
+ from icefall,
125
+ where xxx is the number of BPE tokens you used to train the model.
126
+ Note: Use it only when your model is using BPE. You don't need to
127
+ provide it if you provide `--token-filename`
128
+ """,
129
+ )
130
+
131
+ parser.add_argument(
132
+ "--token-filename",
133
+ type=str,
134
+ help="""Filename for tokens.txt
135
+ You can find it in the directory
136
+ egs/aishell/ASR/data/lang_char/tokens.txt from icefall.
137
+ Note: You don't need to provide it if you provide `--bpe-model`
138
+ """,
139
+ )
140
+
141
+ parser.add_argument(
142
+ "--decoding-method",
143
+ type=str,
144
+ default="greedy_search",
145
+ help="""Decoding method to use. Currently, only greedy_search and
146
+ modified_beam_search are implemented.
147
+ """,
148
+ )
149
+
150
+ parser.add_argument(
151
+ "--num-active-paths",
152
+ type=int,
153
+ default=4,
154
+ help="""Used only when decoding_method is modified_beam_search.
155
+ It specifies number of active paths for each utterance. Due to
156
+ merging paths with identical token sequences, the actual number
157
+ may be less than "num_active_paths".
158
+ """,
159
+ )
160
+
161
+ parser.add_argument(
162
+ "--sample-rate",
163
+ type=int,
164
+ default=16000,
165
+ help="The expected sample rate of the input sound files",
166
+ )
167
+
168
+ parser.add_argument(
169
+ "sound_files",
170
+ type=str,
171
+ nargs="+",
172
+ help="The input sound file(s) to transcribe. "
173
+ "Supported formats are those supported by torchaudio.load(). "
174
+ "For example, wav and flac are supported. "
175
+ "The sample rate has to equal to `--sample-rate`.",
176
+ )
177
+
178
+ return parser.parse_args()
179
+
180
+
181
+ def read_sound_files(
182
+ filenames: List[str],
183
+ expected_sample_rate: int,
184
+ ) -> List[torch.Tensor]:
185
+ """Read a list of sound files into a list 1-D float32 torch tensors.
186
+ Args:
187
+ filenames:
188
+ A list of sound filenames.
189
+ expected_sample_rate:
190
+ The expected sample rate of the sound files.
191
+ Returns:
192
+ Return a list of 1-D float32 torch tensors.
193
+ """
194
+ ans = []
195
+ for f in filenames:
196
+ wave, sample_rate = torchaudio.load(f)
197
+ assert sample_rate == expected_sample_rate, (
198
+ f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
199
+ )
200
+ # We use only the first channel
201
+ ans.append(wave[0])
202
+ return ans
203
+
204
+
205
+ class OfflineAsr(object):
206
+ def __init__(
207
+ self,
208
+ nn_model_filename: str,
209
+ bpe_model_filename: Optional[str] = None,
210
+ token_filename: Optional[str] = None,
211
+ decoding_method: str = "greedy_search",
212
+ num_active_paths: int = 4,
213
+ sample_rate: int = 16000,
214
+ device: Union[str, torch.device] = "cpu",
215
+ ):
216
+ """
217
+ Args:
218
+ nn_model_filename:
219
+ Path to the torch script model.
220
+ bpe_model_filename:
221
+ Path to the BPE model. If it is None, you have to provide
222
+ `token_filename`.
223
+ token_filename:
224
+ Path to tokens.txt. If it is None, you have to provide
225
+ `bpe_model_filename`.
226
+ sample_rate:
227
+ Expected sample rate of the feature extractor.
228
+ device:
229
+ The device to use for computation.
230
+ """
231
+ self.model = RnntConformerModel(
232
+ filename=nn_model_filename,
233
+ device=device,
234
+ optimize_for_inference=False,
235
+ )
236
+
237
+ if bpe_model_filename:
238
+ self.sp = spm.SentencePieceProcessor()
239
+ self.sp.load(bpe_model_filename)
240
+ else:
241
+ assert token_filename is not None, token_filename
242
+ self.token_table = k2.SymbolTable.from_file(token_filename)
243
+
244
+ self.feature_extractor = self._build_feature_extractor(
245
+ sample_rate=sample_rate,
246
+ device=device,
247
+ )
248
+
249
+ self.device = device
250
+
251
+ def _build_feature_extractor(
252
+ self,
253
+ sample_rate: int = 16000,
254
+ device: Union[str, torch.device] = "cpu",
255
+ ) -> kaldifeat.OfflineFeature:
256
+ """Build a fbank feature extractor for extracting features.
257
+
258
+ Args:
259
+ sample_rate:
260
+ Expected sample rate of the feature extractor.
261
+ device:
262
+ The device to use for computation.
263
+ Returns:
264
+ Return a fbank feature extractor.
265
+ """
266
+ opts = kaldifeat.FbankOptions()
267
+ opts.device = device
268
+ opts.frame_opts.dither = 0
269
+ opts.frame_opts.snip_edges = False
270
+ opts.frame_opts.samp_freq = sample_rate
271
+ opts.mel_opts.num_bins = 80
272
+
273
+ fbank = kaldifeat.Fbank(opts)
274
+
275
+ return fbank
276
+
277
+ def decode_waves(
278
+ self,
279
+ waves: List[torch.Tensor],
280
+ decoding_method: str,
281
+ num_active_paths: int,
282
+ ) -> List[List[str]]:
283
+ """
284
+ Args:
285
+ waves:
286
+ A list of 1-D torch.float32 tensors containing audio samples.
287
+ wavs[i] contains audio samples for the i-th utterance.
288
+
289
+ Note:
290
+ Whether it should be in the range [-32768, 32767] or be normalized
291
+ to [-1, 1] depends on which range you used for your training data.
292
+ For instance, if your training data used [-32768, 32767],
293
+ then the given waves have to contain samples in this range.
294
+
295
+ All models trained in icefall use the normalized range [-1, 1].
296
+ decoding_method:
297
+ The decoding method to use. Currently, only greedy_search and
298
+ modified_beam_search are implemented.
299
+ num_active_paths:
300
+ Used only when decoding_method is modified_beam_search.
301
+ It specifies number of active paths for each utterance. Due to
302
+ merging paths with identical token sequences, the actual number
303
+ may be less than "num_active_paths".
304
+ Returns:
305
+ Return a list of decoded results. `ans[i]` contains the decoded
306
+ results for `wavs[i]`.
307
+ """
308
+ assert decoding_method in (
309
+ "greedy_search",
310
+ "modified_beam_search",
311
+ ), decoding_method
312
+
313
+ if decoding_method == "greedy_search":
314
+ nn_and_decoding_func = run_model_and_do_greedy_search
315
+ elif decoding_method == "modified_beam_search":
316
+ nn_and_decoding_func = functools.partial(
317
+ run_model_and_do_modified_beam_search,
318
+ num_active_paths=num_active_paths,
319
+ )
320
+ else:
321
+ raise ValueError(
322
+ f"Unsupported decoding_method: {decoding_method} "
323
+ "Please use greedy_search or modified_beam_search"
324
+ )
325
+
326
+ waves = [w.to(self.device) for w in waves]
327
+ features = self.feature_extractor(waves)
328
+
329
+ tokens = nn_and_decoding_func(self.model, features)
330
+
331
+ if hasattr(self, "sp"):
332
+ results = self.sp.decode(tokens)
333
+ else:
334
+ results = [[self.token_table[i] for i in hyp] for hyp in tokens]
335
+ blank = chr(0x2581)
336
+ results = ["".join(r) for r in results]
337
+ results = [r.replace(blank, " ") for r in results]
338
+
339
+ return results
340
+
341
+
342
+ @torch.no_grad()
343
+ def main():
344
+ args = get_args()
345
+ logging.info(vars(args))
346
+
347
+ nn_model_filename = args.nn_model_filename
348
+ bpe_model_filename = args.bpe_model_filename
349
+ token_filename = args.token_filename
350
+ decoding_method = args.decoding_method
351
+ num_active_paths = args.num_active_paths
352
+ sample_rate = args.sample_rate
353
+ sound_files = args.sound_files
354
+
355
+ assert decoding_method in ("greedy_search", "modified_beam_search"), decoding_method
356
+
357
+ if decoding_method == "modified_beam_search":
358
+ assert num_active_paths >= 1, num_active_paths
359
+
360
+ if bpe_model_filename:
361
+ assert token_filename is None
362
+
363
+ if token_filename:
364
+ assert bpe_model_filename is None
365
+
366
+ device = torch.device("cpu")
367
+ if torch.cuda.is_available():
368
+ device = torch.device("cuda", 0)
369
+
370
+ logging.info(f"device: {device}")
371
+
372
+ offline_asr = OfflineAsr(
373
+ nn_model_filename=nn_model_filename,
374
+ bpe_model_filename=bpe_model_filename,
375
+ token_filename=token_filename,
376
+ decoding_method=decoding_method,
377
+ num_active_paths=num_active_paths,
378
+ sample_rate=sample_rate,
379
+ device=device,
380
+ )
381
+
382
+ waves = read_sound_files(
383
+ filenames=sound_files,
384
+ expected_sample_rate=sample_rate,
385
+ )
386
+
387
+ logging.info("Decoding started.")
388
+
389
+ hyps = offline_asr.decode_waves(waves)
390
+
391
+ s = "\n"
392
+ for filename, hyp in zip(sound_files, hyps):
393
+ s += f"{filename}:\n{hyp}\n\n"
394
+ logging.info(s)
395
+
396
+ logging.info("Decoding done.")
397
+
398
+
399
+ torch.set_num_threads(1)
400
+ torch.set_num_interop_threads(1)
401
+
402
+ # See https://github.com/pytorch/pytorch/issues/38342
403
+ # and https://github.com/pytorch/pytorch/issues/33354
404
+ #
405
+ # If we don't do this, the delay increases whenever there is
406
+ # a new request that changes the actual batch size.
407
+ # If you use `py-spy dump --pid <server-pid> --native`, you will
408
+ # see a lot of time is spent in re-compiling the torch script model.
409
+ torch._C._jit_set_profiling_executor(False)
410
+ torch._C._jit_set_profiling_mode(False)
411
+ torch._C._set_graph_executor_optimize(False)
412
+ """
413
+ // Use the following in C++
414
+ torch::jit::getExecutorMode() = false;
415
+ torch::jit::getProfilingMode() = false;
416
+ torch::jit::setGraphExecutorOptimize(false);
417
+ """
418
+
419
+ if __name__ == "__main__":
420
+ torch.manual_seed(20220609)
421
+
422
+ formatter = (
423
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" # noqa
424
+ )
425
+ logging.basicConfig(format=formatter, level=logging.INFO)
426
+
427
+ main()
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://download.pytorch.org/whl/cpu/torch-1.10.0%2Bcpu-cp38-cp38-linux_x86_64.whl
2
+ https://k2-fsa.org/nightly/whl/k2-1.17.dev20220711+cpu.torch1.10.0-cp38-cp38-linux_x86_64.whl
3
+ https://download.pytorch.org/whl/cpu/torchaudio-0.10.0%2Bcpu-cp38-cp38-linux_x86_64.whl
4
+
5
+
6
+ https://huggingface.co/csukuangfj/wheels/resolve/main/kaldifeat-1.17-cp38-cp38-linux_x86_64.whl
7
+ https://huggingface.co/csukuangfj/wheels/resolve/main/k2_sherpa-0.6-cp38-cp38-linux_x86_64.whl
8
+
9
+
10
+ sentencepiece>=0.1.96
11
+ numpy
12
+
13
+ huggingface_hub