|
import gradio as gr |
|
import os |
|
from transformers import pipeline, set_seed |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
def Bemenet(input_string): |
|
|
|
encoded_input = tokenizer([input_string], padding=True, truncation=True, return_tensors='pt') |
|
|
|
|
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
|
|
return F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
|
|
interface = gr.Interface(fn=Bemenet, |
|
title="Beágyazások", |
|
description="Az itt megosztott példa mondatokhoz készít beágyazásokat (embedding). A bal oldali input mezőbe beírt mondat beágyazása a jobb oldali szöveges mezőben jelenik meg.", |
|
inputs="text", |
|
outputs="text") |
|
|
|
interface.launch() |