initial commit
Browse files- README.md +5 -5
- app.py +42 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Gpt 2 Secret
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from transformers import pipeline, set_seed
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def mean_pooling(model_output, attention_mask):
|
10 |
+
token_embeddings = model_output[0]
|
11 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
12 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
17 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def Bemenet(bemenet):
|
22 |
+
# Tokenize sentences
|
23 |
+
encoded_input = tokenizer([bemenet], padding=True, truncation=True, return_tensors='pt')
|
24 |
+
|
25 |
+
# Compute token embeddings
|
26 |
+
with torch.no_grad():
|
27 |
+
model_output = model(**encoded_input)
|
28 |
+
|
29 |
+
# Perform pooling
|
30 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
31 |
+
|
32 |
+
# Normalize embeddings
|
33 |
+
return F.normalize(sentence_embeddings, p=2, dim=1)
|
34 |
+
|
35 |
+
|
36 |
+
interface = gr.Interface(fn=Bemenet,
|
37 |
+
title="Cím..",
|
38 |
+
description="Leírás..",
|
39 |
+
inputs="text",
|
40 |
+
outputs="text")
|
41 |
+
|
42 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
tensorflow
|
3 |
+
torch
|