Spaces:
Sleeping
Sleeping
Jon Taylor
commited on
Commit
·
e606d44
1
Parent(s):
6776a75
1fps streaming hooray
Browse files- app/bot.py +7 -5
- app/pipeline.py +5 -5
app/bot.py
CHANGED
@@ -86,7 +86,7 @@ class DailyVision(EventHandler):
|
|
86 |
self.__camera = Daily.create_camera_device("camera",
|
87 |
width = video_frame.width,
|
88 |
height = video_frame.height,
|
89 |
-
color_format="
|
90 |
self.__client.update_inputs({
|
91 |
"camera": {
|
92 |
"isEnabled": True,
|
@@ -97,6 +97,8 @@ class DailyVision(EventHandler):
|
|
97 |
})
|
98 |
|
99 |
def process_frames(self):
|
|
|
|
|
100 |
while not self.__app_quit:
|
101 |
# Is anyone watching?
|
102 |
if not self.__idle and len(self.__client.participants()) < 2:
|
@@ -113,16 +115,16 @@ class DailyVision(EventHandler):
|
|
113 |
|
114 |
if video_frame:
|
115 |
image = Image.frombytes("RGBA", (video_frame.width, video_frame.height), video_frame.buffer)
|
116 |
-
|
|
|
117 |
#pil = Image.fromarray(result.render()[0], mode="RGB").tobytes()
|
118 |
-
|
119 |
-
self.__camera.write_frame(image.tobytes())
|
120 |
except queue.Empty:
|
121 |
pass
|
122 |
|
123 |
def on_video_frame(self, participant_id, video_frame):
|
124 |
# Process ~15 frames per second (considering incoming frames at 30fps).
|
125 |
-
if time.time() - self.__time > 0.05:
|
126 |
self.__time = time.time()
|
127 |
self.setup_camera(video_frame)
|
128 |
self.__queue.put(video_frame)
|
|
|
86 |
self.__camera = Daily.create_camera_device("camera",
|
87 |
width = video_frame.width,
|
88 |
height = video_frame.height,
|
89 |
+
color_format="RGB")
|
90 |
self.__client.update_inputs({
|
91 |
"camera": {
|
92 |
"isEnabled": True,
|
|
|
97 |
})
|
98 |
|
99 |
def process_frames(self):
|
100 |
+
params = Pipeline.InputParams()
|
101 |
+
|
102 |
while not self.__app_quit:
|
103 |
# Is anyone watching?
|
104 |
if not self.__idle and len(self.__client.participants()) < 2:
|
|
|
115 |
|
116 |
if video_frame:
|
117 |
image = Image.frombytes("RGBA", (video_frame.width, video_frame.height), video_frame.buffer)
|
118 |
+
result_image = self.__pipeline.predict(params, image).convert("RGB")
|
119 |
+
self.__camera.write_frame(result_image.tobytes())
|
120 |
#pil = Image.fromarray(result.render()[0], mode="RGB").tobytes()
|
121 |
+
#self.__camera.write_frame(result_image.tobytes())
|
|
|
122 |
except queue.Empty:
|
123 |
pass
|
124 |
|
125 |
def on_video_frame(self, participant_id, video_frame):
|
126 |
# Process ~15 frames per second (considering incoming frames at 30fps).
|
127 |
+
if time.time() - self.__time > 1: #0.05:
|
128 |
self.__time = time.time()
|
129 |
self.setup_camera(video_frame)
|
130 |
self.__queue.put(video_frame)
|
app/pipeline.py
CHANGED
@@ -51,10 +51,10 @@ class Pipeline:
|
|
51 |
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
52 |
)
|
53 |
width: int = Field(
|
54 |
-
|
55 |
)
|
56 |
height: int = Field(
|
57 |
-
|
58 |
)
|
59 |
guidance_scale: float = Field(
|
60 |
1.0,
|
@@ -181,8 +181,8 @@ class Pipeline:
|
|
181 |
|
182 |
self.pipe(
|
183 |
prompt="warmup",
|
184 |
-
image=[Image.new("RGB", (
|
185 |
-
control_image=[Image.new("RGB", (
|
186 |
)
|
187 |
|
188 |
def predict(self, params: "Pipeline.InputParams", image) -> Image.Image:
|
@@ -222,7 +222,7 @@ class Pipeline:
|
|
222 |
return None
|
223 |
result_image = results.images[0]
|
224 |
|
225 |
-
if os.getenv("CONTROL_NET_OVERLAY"):
|
226 |
# paste control_image on top of result_image
|
227 |
w0, h0 = (200, 200)
|
228 |
control_image = control_image.resize((w0, h0))
|
|
|
51 |
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
52 |
)
|
53 |
width: int = Field(
|
54 |
+
640, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
55 |
)
|
56 |
height: int = Field(
|
57 |
+
480, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
58 |
)
|
59 |
guidance_scale: float = Field(
|
60 |
1.0,
|
|
|
181 |
|
182 |
self.pipe(
|
183 |
prompt="warmup",
|
184 |
+
image=[Image.new("RGB", (640, 480))],
|
185 |
+
control_image=[Image.new("RGB", (640, 480))],
|
186 |
)
|
187 |
|
188 |
def predict(self, params: "Pipeline.InputParams", image) -> Image.Image:
|
|
|
222 |
return None
|
223 |
result_image = results.images[0]
|
224 |
|
225 |
+
if os.getenv("CONTROL_NET_OVERLAY", True):
|
226 |
# paste control_image on top of result_image
|
227 |
w0, h0 = (200, 200)
|
228 |
control_image = control_image.resize((w0, h0))
|