Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,36 +8,10 @@ nltk.download('punkt')
|
|
8 |
|
9 |
# Define available models
|
10 |
models = {
|
11 |
-
"PFSA-ID-
|
12 |
"PFSA-ID-MED-IndoBERT-LEM": "damand2061/pfsa-id-med-indobert-lem"
|
13 |
}
|
14 |
|
15 |
-
# Define label descriptions for each model
|
16 |
-
label_descriptions = {
|
17 |
-
"PFSA-ID-MEDWO-IndoBERT-LEM": [
|
18 |
-
["STATEMENT", "Pernyataan"],
|
19 |
-
["CUECOREF", "Isyarat Pronomina"],
|
20 |
-
["CUE", "Isyarat"],
|
21 |
-
["AFFILIATION", "Afiliasi"],
|
22 |
-
["ROLE", "Jabatan"],
|
23 |
-
["PERSONCOREF", "Pronomina Orang"],
|
24 |
-
["PERSON", "Orang"],
|
25 |
-
],
|
26 |
-
"PFSA-ID-MED-IndoBERT-LEM": [
|
27 |
-
["EVENT", "Acara"],
|
28 |
-
["LOCATION", "Lokasi"],
|
29 |
-
["DATETIME", "Waktu"],
|
30 |
-
["ISSUE", "Isu"],
|
31 |
-
["STATEMENT", "Pernyataan"],
|
32 |
-
["CUECOREF", "Isyarat Pronomina"],
|
33 |
-
["CUE", "Isyarat"],
|
34 |
-
["AFFILIATION", "Afiliasi"],
|
35 |
-
["ROLE", "Jabatan"],
|
36 |
-
["PERSONCOREF", "Pronomina Orang"],
|
37 |
-
["PERSON", "Orang"],
|
38 |
-
]
|
39 |
-
}
|
40 |
-
|
41 |
def load_model(model_name):
|
42 |
ner_pipeline = pipeline("ner", model=models[model_name])
|
43 |
ner_pipeline.model.config.id2label = {k: v.replace("L-", "I-").replace("U-", "B-") for k, v in ner_pipeline.model.config.id2label.items()}
|
@@ -144,10 +118,20 @@ with gr.Blocks() as demo:
|
|
144 |
gr.Examples(example_link, inputs=link_input)
|
145 |
|
146 |
gr.Markdown("## Penjelasan Label")
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
demo.launch()
|
|
|
8 |
|
9 |
# Define available models
|
10 |
models = {
|
11 |
+
"PFSA-ID-IndoBERT-LEM": "damand2061/pfsa-id-indobert-lem",
|
12 |
"PFSA-ID-MED-IndoBERT-LEM": "damand2061/pfsa-id-med-indobert-lem"
|
13 |
}
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def load_model(model_name):
|
16 |
ner_pipeline = pipeline("ner", model=models[model_name])
|
17 |
ner_pipeline.model.config.id2label = {k: v.replace("L-", "I-").replace("U-", "B-") for k, v in ner_pipeline.model.config.id2label.items()}
|
|
|
118 |
gr.Examples(example_link, inputs=link_input)
|
119 |
|
120 |
gr.Markdown("## Penjelasan Label")
|
121 |
+
label_descriptions = [
|
122 |
+
["EVENT", "Acara"],
|
123 |
+
["LOCATION", "Lokasi"],
|
124 |
+
["DATETIME", "Waktu"],
|
125 |
+
["ISSUE", "Isu"],
|
126 |
+
["STATEMENT", "Pernyataan"],
|
127 |
+
["CUECOREF", "Isyarat Pronomina"],
|
128 |
+
["CUE", "Isyarat"],
|
129 |
+
["AFFILIATION", "Afiliasi"],
|
130 |
+
["ROLE", "Jabatan"],
|
131 |
+
["PERSONCOREF", "Pronomina Orang"],
|
132 |
+
["PERSON", "Orang"],
|
133 |
+
]
|
134 |
+
gr.DataFrame(label_descriptions, headers=["Label", "Keterangan"])
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
demo.launch()
|