Spaces:
Runtime error
Runtime error
Ubuntu
commited on
Commit
Β·
7935b1e
1
Parent(s):
8f9a049
corrected requiremet
Browse files- .gitignore +1 -0
- TestApp/gradio-app.py +243 -0
- TestApp/quick_pipeline.py +85 -0
- requirements.txt +2 -1
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
nohup.out
|
|
|
|
1 |
nohup.out
|
2 |
+
__pycache__/**
|
TestApp/gradio-app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 MosaicML spaces authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
# and
|
4 |
+
# the https://huggingface.co/spaces/HuggingFaceH4/databricks-dolly authors
|
5 |
+
import datetime
|
6 |
+
import os
|
7 |
+
from threading import Event, Thread
|
8 |
+
from uuid import uuid4
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import requests
|
12 |
+
import torch
|
13 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
14 |
+
|
15 |
+
from quick_pipeline import InstructionTextGenerationPipeline as pipeline
|
16 |
+
|
17 |
+
|
18 |
+
# Configuration
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
20 |
+
|
21 |
+
examples = [
|
22 |
+
# to do: add coupled hparams so e.g. poem has higher temp
|
23 |
+
"Write a travel blog about a 3-day trip to Thailand.",
|
24 |
+
"Write a short story about a robot that has a nice day.",
|
25 |
+
"Convert the following to a single line of JSON:\n\n```name: John\nage: 30\naddress:\n street:123 Main St.\n city: San Francisco\n state: CA\n zip: 94101\n```",
|
26 |
+
"Write a quick email to congratulate MosaicML about the launch of their inference offering.",
|
27 |
+
"Explain how a candle works to a 6 year old in a few sentences.",
|
28 |
+
"What are some of the most common misconceptions about birds?",
|
29 |
+
]
|
30 |
+
|
31 |
+
# Initialize the model and tokenizer
|
32 |
+
generate = pipeline(
|
33 |
+
"mosaicml/mpt-7b-instruct",
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
trust_remote_code=True,
|
36 |
+
use_auth_token=HF_TOKEN,
|
37 |
+
)
|
38 |
+
stop_token_ids = generate.tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
|
39 |
+
|
40 |
+
|
41 |
+
# Define a custom stopping criteria
|
42 |
+
class StopOnTokens(StoppingCriteria):
|
43 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
44 |
+
for stop_id in stop_token_ids:
|
45 |
+
if input_ids[0][-1] == stop_id:
|
46 |
+
return True
|
47 |
+
return False
|
48 |
+
|
49 |
+
|
50 |
+
def log_conversation(session_id, instruction, response, generate_kwargs):
|
51 |
+
logging_url = os.getenv("LOGGING_URL", None)
|
52 |
+
if logging_url is None:
|
53 |
+
return
|
54 |
+
|
55 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
56 |
+
|
57 |
+
data = {
|
58 |
+
"session_id": session_id,
|
59 |
+
"timestamp": timestamp,
|
60 |
+
"instruction": instruction,
|
61 |
+
"response": response,
|
62 |
+
"generate_kwargs": generate_kwargs,
|
63 |
+
}
|
64 |
+
|
65 |
+
try:
|
66 |
+
requests.post(logging_url, json=data)
|
67 |
+
except requests.exceptions.RequestException as e:
|
68 |
+
print(f"Error logging conversation: {e}")
|
69 |
+
|
70 |
+
|
71 |
+
def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, session_id):
|
72 |
+
# Tokenize the input
|
73 |
+
input_ids = generate.tokenizer(
|
74 |
+
generate.format_instruction(instruction), return_tensors="pt"
|
75 |
+
).input_ids
|
76 |
+
input_ids = input_ids.to(generate.model.device)
|
77 |
+
|
78 |
+
# Initialize the streamer and stopping criteria
|
79 |
+
streamer = TextIteratorStreamer(
|
80 |
+
generate.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
81 |
+
)
|
82 |
+
stop = StopOnTokens()
|
83 |
+
|
84 |
+
if temperature < 0.1:
|
85 |
+
temperature = 0.0
|
86 |
+
do_sample = False
|
87 |
+
else:
|
88 |
+
do_sample = True
|
89 |
+
|
90 |
+
gkw = {
|
91 |
+
**generate.generate_kwargs,
|
92 |
+
**{
|
93 |
+
"input_ids": input_ids,
|
94 |
+
"max_new_tokens": max_new_tokens,
|
95 |
+
"temperature": temperature,
|
96 |
+
"do_sample": do_sample,
|
97 |
+
"top_p": top_p,
|
98 |
+
"top_k": top_k,
|
99 |
+
"streamer": streamer,
|
100 |
+
"stopping_criteria": StoppingCriteriaList([stop]),
|
101 |
+
},
|
102 |
+
}
|
103 |
+
|
104 |
+
response = ""
|
105 |
+
stream_complete = Event()
|
106 |
+
|
107 |
+
def generate_and_signal_complete():
|
108 |
+
generate.model.generate(**gkw)
|
109 |
+
stream_complete.set()
|
110 |
+
|
111 |
+
def log_after_stream_complete():
|
112 |
+
stream_complete.wait()
|
113 |
+
log_conversation(
|
114 |
+
session_id,
|
115 |
+
instruction,
|
116 |
+
response,
|
117 |
+
{
|
118 |
+
"top_k": top_k,
|
119 |
+
"top_p": top_p,
|
120 |
+
"temperature": temperature,
|
121 |
+
},
|
122 |
+
)
|
123 |
+
|
124 |
+
t1 = Thread(target=generate_and_signal_complete)
|
125 |
+
t1.start()
|
126 |
+
|
127 |
+
t2 = Thread(target=log_after_stream_complete)
|
128 |
+
t2.start()
|
129 |
+
|
130 |
+
for new_text in streamer:
|
131 |
+
response += new_text
|
132 |
+
yield response
|
133 |
+
|
134 |
+
|
135 |
+
with gr.Blocks(
|
136 |
+
theme=gr.themes.Soft(),
|
137 |
+
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
138 |
+
) as demo:
|
139 |
+
session_id = gr.State(lambda: str(uuid4()))
|
140 |
+
gr.Markdown(
|
141 |
+
"""<h1><center>MosaicML MPT-7B-Instruct</center></h1>
|
142 |
+
This demo is of [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct). It is based on [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) fine-tuned with approximately [60,000 instruction demonstrations](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf)
|
143 |
+
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs, [sign up](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b) for MosaicML platform.
|
144 |
+
This is running on a smaller, shared GPU, so it may take a few seconds to respond. If you want to run it on your own GPU, you can [download the model from HuggingFace](https://huggingface.co/mosaicml/mpt-7b-instruct) and run it locally. Or [Duplicate the Space](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct?duplicate=true) to skip the queue and run in a private space."""
|
145 |
+
)
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Column():
|
148 |
+
with gr.Row():
|
149 |
+
instruction = gr.Textbox(
|
150 |
+
placeholder="Enter your question here",
|
151 |
+
label="Question/Instruction",
|
152 |
+
elem_id="q-input",
|
153 |
+
)
|
154 |
+
with gr.Accordion("Advanced Options:", open=False):
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
with gr.Row():
|
158 |
+
temperature = gr.Slider(
|
159 |
+
label="Temperature",
|
160 |
+
value=0.1,
|
161 |
+
minimum=0.0,
|
162 |
+
maximum=1.0,
|
163 |
+
step=0.1,
|
164 |
+
interactive=True,
|
165 |
+
info="Higher values produce more diverse outputs",
|
166 |
+
)
|
167 |
+
with gr.Column():
|
168 |
+
with gr.Row():
|
169 |
+
top_p = gr.Slider(
|
170 |
+
label="Top-p (nucleus sampling)",
|
171 |
+
value=1.0,
|
172 |
+
minimum=0.0,
|
173 |
+
maximum=1,
|
174 |
+
step=0.01,
|
175 |
+
interactive=True,
|
176 |
+
info=(
|
177 |
+
"Sample from the smallest possible set of tokens whose cumulative probability "
|
178 |
+
"exceeds top_p. Set to 1 to disable and sample from all tokens."
|
179 |
+
),
|
180 |
+
)
|
181 |
+
with gr.Column():
|
182 |
+
with gr.Row():
|
183 |
+
top_k = gr.Slider(
|
184 |
+
label="Top-k",
|
185 |
+
value=0,
|
186 |
+
minimum=0.0,
|
187 |
+
maximum=200,
|
188 |
+
step=1,
|
189 |
+
interactive=True,
|
190 |
+
info="Sample from a shortlist of top-k tokens β 0 to disable and sample from all tokens.",
|
191 |
+
)
|
192 |
+
with gr.Column():
|
193 |
+
with gr.Row():
|
194 |
+
max_new_tokens = gr.Slider(
|
195 |
+
label="Maximum new tokens",
|
196 |
+
value=256,
|
197 |
+
minimum=0,
|
198 |
+
maximum=1664,
|
199 |
+
step=5,
|
200 |
+
interactive=True,
|
201 |
+
info="The maximum number of new tokens to generate",
|
202 |
+
)
|
203 |
+
with gr.Row():
|
204 |
+
submit = gr.Button("Submit")
|
205 |
+
with gr.Row():
|
206 |
+
with gr.Box():
|
207 |
+
gr.Markdown("**MPT-7B-Instruct**")
|
208 |
+
output_7b = gr.Markdown()
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
gr.Examples(
|
212 |
+
examples=examples,
|
213 |
+
inputs=[instruction],
|
214 |
+
cache_examples=False,
|
215 |
+
fn=process_stream,
|
216 |
+
outputs=output_7b,
|
217 |
+
)
|
218 |
+
with gr.Row():
|
219 |
+
gr.Markdown(
|
220 |
+
"Disclaimer: MPT-7B can produce factually incorrect output, and should not be relied on to produce "
|
221 |
+
"factually accurate information. MPT-7B was trained on various public datasets; while great efforts "
|
222 |
+
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
|
223 |
+
"biased, or otherwise offensive outputs.",
|
224 |
+
elem_classes=["disclaimer"],
|
225 |
+
)
|
226 |
+
with gr.Row():
|
227 |
+
gr.Markdown(
|
228 |
+
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
|
229 |
+
elem_classes=["disclaimer"],
|
230 |
+
)
|
231 |
+
|
232 |
+
submit.click(
|
233 |
+
process_stream,
|
234 |
+
inputs=[instruction, temperature, top_p, top_k, max_new_tokens, session_id],
|
235 |
+
outputs=output_7b,
|
236 |
+
)
|
237 |
+
instruction.submit(
|
238 |
+
process_stream,
|
239 |
+
inputs=[instruction, temperature, top_p, top_k, max_new_tokens, session_id],
|
240 |
+
outputs=output_7b,
|
241 |
+
)
|
242 |
+
|
243 |
+
demo.queue(max_size=32, concurrency_count=4).launch(debug=True)
|
TestApp/quick_pipeline.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Tuple
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
INSTRUCTION_KEY = "### Instruction:"
|
9 |
+
RESPONSE_KEY = "### Response:"
|
10 |
+
END_KEY = "### End"
|
11 |
+
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
12 |
+
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
13 |
+
|
14 |
+
{instruction_key}
|
15 |
+
{instruction}
|
16 |
+
|
17 |
+
{response_key}
|
18 |
+
""".format(
|
19 |
+
intro=INTRO_BLURB,
|
20 |
+
instruction_key=INSTRUCTION_KEY,
|
21 |
+
instruction="{instruction}",
|
22 |
+
response_key=RESPONSE_KEY,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class InstructionTextGenerationPipeline:
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
model_name,
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
trust_remote_code=True,
|
32 |
+
use_auth_token=None,
|
33 |
+
) -> None:
|
34 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
model_name,
|
36 |
+
torch_dtype=torch_dtype,
|
37 |
+
trust_remote_code=trust_remote_code,
|
38 |
+
use_auth_token=use_auth_token,
|
39 |
+
)
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
trust_remote_code=trust_remote_code,
|
44 |
+
use_auth_token=use_auth_token,
|
45 |
+
)
|
46 |
+
if tokenizer.pad_token_id is None:
|
47 |
+
warnings.warn(
|
48 |
+
"pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
|
49 |
+
)
|
50 |
+
tokenizer.pad_token = tokenizer.eos_token
|
51 |
+
tokenizer.padding_side = "left"
|
52 |
+
self.tokenizer = tokenizer
|
53 |
+
|
54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
+
self.model.eval()
|
56 |
+
self.model.to(device=device, dtype=torch_dtype)
|
57 |
+
|
58 |
+
self.generate_kwargs = {
|
59 |
+
"temperature": 0.5,
|
60 |
+
"top_p": 0.92,
|
61 |
+
"top_k": 0,
|
62 |
+
"max_new_tokens": 512,
|
63 |
+
"use_cache": True,
|
64 |
+
"do_sample": True,
|
65 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
66 |
+
"pad_token_id": self.tokenizer.pad_token_id,
|
67 |
+
"repetition_penalty": 1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
|
68 |
+
}
|
69 |
+
|
70 |
+
def format_instruction(self, instruction):
|
71 |
+
return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
72 |
+
|
73 |
+
def __call__(
|
74 |
+
self, instruction: str, **generate_kwargs: Dict[str, Any]
|
75 |
+
) -> Tuple[str, str, float]:
|
76 |
+
s = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
|
77 |
+
input_ids = self.tokenizer(s, return_tensors="pt").input_ids
|
78 |
+
input_ids = input_ids.to(self.model.device)
|
79 |
+
gkw = {**self.generate_kwargs, **generate_kwargs}
|
80 |
+
with torch.no_grad():
|
81 |
+
output_ids = self.model.generate(input_ids, **gkw)
|
82 |
+
# Slice the output_ids tensor to get only new tokens
|
83 |
+
new_tokens = output_ids[0, len(input_ids[0]) :]
|
84 |
+
output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
85 |
+
return output_text
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
|
|
1 |
urllib3==1.26.6
|
2 |
gradio
|
3 |
-
transformers
|
4 |
einops
|
5 |
torch
|
6 |
config
|
|
|
1 |
+
-e git+https://github.com/samhavens/just-triton-flash.git#egg=flash_attn
|
2 |
urllib3==1.26.6
|
3 |
gradio
|
4 |
+
transformers==4.29.2
|
5 |
einops
|
6 |
torch
|
7 |
config
|